import os import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT from src.assets.css_html_js import custom_css, get_window_url_params from src.utils import restart_space, load_dataset_repo, make_clickable_model LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN") COLUMNS_MAPPING = { "model": "Model 🤗", "backend.name": "Backend 🏭", "backend.torch_dtype": "Load Datatype 📥", "generate.latency(s)": "Latency (s) ⬇️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", } COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"] SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") # preprocess df["model"] = df["model"].apply(make_clickable_model) # filter df = df[COLUMNS_MAPPING.keys()] # rename df.rename(columns={ df_col: rename_col for df_col, rename_col in COLUMNS_MAPPING.items() }, inplace=True) # sort df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) return df # Define demo interface demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🖥️ A100-80GB Benchmark 🏋️", elem_id="A100-benchmark", id=0): SINGLE_A100_TEXT = """