import os
import time
import traceback
import logging
from typing import Optional
from config_store import (
get_process_config,
get_inference_config,
get_openvino_config,
get_pytorch_config,
)
import gradio as gr
from huggingface_hub import create_repo, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from optimum_benchmark.launchers.device_isolation_utils import * # noqa
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark import (
Benchmark,
BenchmarkConfig,
ProcessConfig,
InferenceConfig,
PyTorchConfig,
OVConfig,
)
from optimum_benchmark.logging_utils import setup_logging
from optimum_benchmark.task_utils import infer_task_from_model_name_or_path
DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["pytorch", "openvino"]
TASKS = set(TASKS_TO_OVMODEL.keys()) & set(TASKS_TO_MODEL_LOADERS.keys())
def run_benchmark(kwargs, oauth_token: Optional[gr.OAuthToken] = None):
if oauth_token.token is None or oauth_token.token == "":
yield tuple(None for _ in BACKENDS)
raise gr.Error("Please login to be able to run the benchmark.")
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
name = whoami(oauth_token.token)["name"]
repo_id = f"{name}/benchmarks"
token = oauth_token.token
create_repo(repo_id, token=token, repo_type="dataset", exist_ok=True)
gr.Info(f'Created repository "{repo_id}" where results will be pushed.')
configs = {
"process": {},
"inference": {},
"pytorch": {},
"openvino": {},
}
for key, value in kwargs.items():
if key.label == "model":
model = value
elif key.label == "task":
task = value
elif "." in key.label:
backend, argument = key.label.split(".")
configs[backend][argument] = value
else:
continue
for key in configs.keys():
for k, v in configs[key].items():
if k in ["input_shapes", "generate_kwargs", "numactl_kwargs"]:
configs[key][k] = eval(v)
configs["process"] = ProcessConfig(**configs.pop("process"))
configs["inference"] = InferenceConfig(**configs.pop("inference"))
configs["pytorch"] = PyTorchConfig(
task=task,
model=model,
device=DEVICE,
**configs["pytorch"],
)
configs["openvino"] = OVConfig(
task=task,
model=model,
device=DEVICE,
**configs["openvino"],
)
outputs = {
"pytorch": "Running benchmark for PyTorch backend",
"openvino": "Running benchmark for OpenVINO backend",
}
yield tuple(outputs[b] for b in BACKENDS)
setup_logging(level="INFO", prefix="MAIN-PROCESS")
for backend in BACKENDS:
try:
benchmark_name = f"{timestamp}/{backend}"
benchmark_config = BenchmarkConfig(
name=benchmark_name,
backend=configs[backend],
launcher=configs[LAUNCHER],
scenario=configs[SCENARIO],
)
benchmark_config.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
benchmark_report = Benchmark.launch(benchmark_config)
benchmark_report.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
benchmark.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
outputs[backend] = f"\n{benchmark_report.to_markdown_text()}"
yield tuple(outputs[b] for b in BACKENDS)
gr.Info(f"Pushed benchmark to {repo_id}/{benchmark_name}")
except Exception:
outputs[backend] = f"\n```python\n{traceback.format_exc()}```"
yield tuple(outputs[b] for b in BACKENDS)
raise gr.Error(f"Error while running benchmark for {backend}")
logging.getLogger().setLevel(logging.NOTSET)
def update_task(model_id):
try:
inferred_task = infer_task_from_model_name_or_path(model_id)
except Exception:
raise gr.Error(
f"Error while inferring task for {model_id}, please select a task manually."
)
if inferred_task not in TASKS:
raise gr.Error(
f"Task {inferred_task} is not supported by OpenVINO, please select a task manually."
)
return inferred_task
with gr.Blocks() as demo:
# add login button
gr.LoginButton()
# add image
gr.HTML(
""""""
"
"
"This Space uses Optimum-Benchmark to automatically benchmark a model from the Hub on different backends."
"
The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
"