import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") python_code = """ def fib(n): if n <= 0: return 0 elif n == 1: return 1 else: return fib(n-1) + fib(n-2) """ js_code = """ function fib(n) { if (n <= 0) return 0; if (n === 1) return 1; return fib(n - 1) + fib(n - 2); } """ html = """

My First JavaScript

""" scripts = """ async () => { // set testFn() function on globalThis, so you html onlclick can access it // const d3 = await import("https://cdn.jsdelivr.net/npm/d3@7/+esm"); // globalThis.d3 = d3; // or const script = document.createElement("script"); script.onload = () => console.log("d3 loaded") ; script.src = "https://cdn.jsdelivr.net/npm/d3@7"; document.head.appendChild(script) globalThis.testFn = () => { document.getElementById('demo').innerHTML = "Hello" } } """ init_js = """ function createGradioAnimation() { var container = document.createElement('div'); container.id = 'gradio-animation'; container.style.fontSize = '2em'; container.style.fontWeight = 'bold'; container.style.textAlign = 'center'; container.style.marginBottom = '20px'; var text = 'Welcome to Gradio!'; for (var i = 0; i < text.length; i++) { (function(i){ setTimeout(function(){ var letter = document.createElement('span'); letter.style.opacity = '0'; letter.style.transition = 'opacity 0.5s'; letter.innerText = text[i]; container.appendChild(letter); setTimeout(function() { letter.style.opacity = '1'; }, 50); }, i * 250); })(i); } var gradioContainer = document.querySelector('.gradio-container'); gradioContainer.insertBefore(container, gradioContainer.firstChild); return 'Animation created'; } """ def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response, gr.Code(language="python", value=python_code) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with gr.Blocks(js=scripts) as demo: code = gr.Code(render=False) with gr.Row(): with gr.Column(): gr.Markdown("

Change up Noodle Jump!

") gr.ChatInterface( respond, additional_outputs=[code], additional_inputs=[ gr.Textbox(value="You are a sassy chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ] ) with gr.Column(): gr.Markdown("

Code

") gr.FileExplorer() code.render() gr.HTML(html) if __name__ == "__main__": demo.launch()