import os,sys import plotly.graph_objects as go # install environment goods #os.system("pip -q install dgl -f https://data.dgl.ai/wheels/cu113/repo.html") os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html') #os.system('pip install gradio') os.environ["DGLBACKEND"] = "pytorch" #os.system(f'pip install -r ./PROTEIN_GENERATOR/requirements.txt') print('Modules installed') #os.system('pip install --force gradio==3.36.1') #os.system('pip install gradio_client==0.2.7') #os.system('pip install \"numpy<2\"') #os.system('pip install numpy --upgrade') #os.system('pip install --force numpy==1.24.1') if not os.path.exists('./SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'): print('Downloading model weights 1') os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt') print('Successfully Downloaded') if not os.path.exists('./SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'): print('Downloading model weights 2') os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt') print('Successfully Downloaded') import numpy as np import gradio as gr import py3Dmol from io import StringIO import json import secrets import copy import matplotlib.pyplot as plt from utils.sampler import HuggingFace_sampler from utils.parsers_inference import parse_pdb from model.util import writepdb from utils.inpainting_util import * plt.rcParams.update({'font.size': 13}) with open('./tmp/args.json','r') as f: args = json.load(f) # manually set checkpoint to load args['checkpoint'] = None args['dump_trb'] = False args['dump_args'] = True args['save_best_plddt'] = True args['T'] = 25 args['strand_bias'] = 0.0 args['loop_bias'] = 0.0 args['helix_bias'] = 0.0 def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias, secondary_structure, aa_bias, aa_bias_potential, num_steps, noise, hydrophobic_target_score, hydrophobic_potential, contigs, pssm, seq_mask, str_mask, rewrite_pdb): dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt' og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt' model_args = copy.deepcopy(args) # make sampler S = HuggingFace_sampler(args=model_args) # get random prefix S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper() # set args S.args['checkpoint'] = None S.args['dump_trb'] = False S.args['dump_args'] = True S.args['save_best_plddt'] = True S.args['T'] = 20 S.args['strand_bias'] = 0.0 S.args['loop_bias'] = 0.0 S.args['helix_bias'] = 0.0 S.args['potentials'] = None S.args['potential_scale'] = None S.args['aa_composition'] = None # get sequence if entered and make sure all chars are valid alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']} if sequence not in ['',None]: L = len(sequence) aa_seq = [] for aa in sequence.upper(): if aa in alt_aa_dict.keys(): aa_seq.append(np.random.choice(alt_aa_dict[aa])) else: aa_seq.append(aa) S.args['sequence'] = aa_seq elif contigs not in ['',None]: S.args['contigs'] = [contigs] else: S.args['contigs'] = [f'{seq_len}'] L = int(seq_len) print('DEBUG: ',rewrite_pdb) if rewrite_pdb not in ['',None]: S.args['pdb'] = rewrite_pdb.name if seq_mask not in ['',None]: S.args['inpaint_seq'] = [seq_mask] if str_mask not in ['',None]: S.args['inpaint_str'] = [str_mask] if secondary_structure in ['',None]: secondary_structure = None else: secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure]) if L < len(secondary_structure): secondary_structure = secondary_structure[:len(sequence)] elif L == len(secondary_structure): pass else: dseq = L - len(secondary_structure) secondary_structure += secondary_structure[-1]*dseq # potentials potential_list = [] potential_bias_list = [] if aa_bias not in ['',None]: potential_list.append('aa_bias') S.args['aa_composition'] = aa_bias if aa_bias_potential in ['',None]: aa_bias_potential = 3 potential_bias_list.append(str(aa_bias_potential)) ''' if target_charge not in ['',None]: potential_list.append('charge') if charge_potential in ['',None]: charge_potential = 1 potential_bias_list.append(str(charge_potential)) S.args['target_charge'] = float(target_charge) if target_ph in ['',None]: target_ph = 7.4 S.args['target_pH'] = float(target_ph) ''' if hydrophobic_target_score not in ['',None]: potential_list.append('hydrophobic') S.args['hydrophobic_score'] = float(hydrophobic_target_score) if hydrophobic_potential in ['',None]: hydrophobic_potential = 3 potential_bias_list.append(str(hydrophobic_potential)) if pssm not in ['',None]: potential_list.append('PSSM') potential_bias_list.append('5') S.args['PSSM'] = pssm.name if len(potential_list) > 0: S.args['potentials'] = ','.join(potential_list) S.args['potential_scale'] = ','.join(potential_bias_list) # normalise secondary_structure bias from range 0-0.3 S.args['secondary_structure'] = secondary_structure S.args['helix_bias'] = helix_bias S.args['strand_bias'] = strand_bias S.args['loop_bias'] = loop_bias # set T if num_steps in ['',None]: S.args['T'] = 20 else: S.args['T'] = int(num_steps) # noise if 'normal' in noise: S.args['sample_distribution'] = noise S.args['sample_distribution_gmm_means'] = [0] S.args['sample_distribution_gmm_variances'] = [1] elif 'gmm2' in noise: S.args['sample_distribution'] = noise S.args['sample_distribution_gmm_means'] = [-1,1] S.args['sample_distribution_gmm_variances'] = [1,1] elif 'gmm3' in noise: S.args['sample_distribution'] = noise S.args['sample_distribution_gmm_means'] = [-1,0,1] S.args['sample_distribution_gmm_variances'] = [1,1,1] if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0: S.args['checkpoint'] = dssp_checkpoint S.args['d_t1d'] = 29 print('using dssp checkpoint') else: S.args['checkpoint'] = og_checkpoint S.args['d_t1d'] = 24 print('using og checkpoint') for k,v in S.args.items(): print(f"{k} --> {v}") # init S S.model_init() S.diffuser_init() S.setup() # sampling loop plddt_data = [] for j in range(S.max_t): print(f'on step {j}') output_seq, output_pdb, plddt = S.take_step_get_outputs(j) plddt_data.append(plddt) yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t) output_seq, output_pdb, plddt = S.get_outputs() return output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t) def get_plddt_plot(plddt_data, max_t): x = [i+1 for i in range(len(plddt_data))] fig, ax = plt.subplots(figsize=(15,6)) ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o') ax.set_xticks([i+1 for i in range(max_t)]) ax.set_yticks([(i+1)/10 for i in range(10)]) ax.set_ylim([0,1]) ax.set_ylabel('model confidence (plddt)') ax.set_xlabel('diffusion steps (t)') return fig def display_pdb(path_to_pdb): ''' #function to display pdb in py3dmol ''' pdb = open(path_to_pdb, "r").read() view = py3Dmol.view(width=500, height=500) view.addModel(pdb, "pdb") view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) view.zoomTo() output = view._make_html().replace("'", '"') print(view._make_html()) x = f""" {output} """ # do not use ' in this input return f"""""" ''' return f"""""" ''' # MOTIF SCAFFOLDING def get_motif_preview(pdb_id, contigs): ''' #function to display selected motif in py3dmol ''' input_pdb = fetch_pdb(pdb_id=pdb_id.lower()) # rewrite pdb parse = parse_pdb(input_pdb) #output_name = './rewrite_'+input_pdb.split('/')[-1] #writepdb(output_name, torch.tensor(parse_og['xyz']),torch.tensor(parse_og['seq'])) #parse = parse_pdb(output_name) output_name = input_pdb pdb = open(output_name, "r").read() view = py3Dmol.view(width=500, height=500) view.addModel(pdb, "pdb") if contigs in ['',0]: contigs = ['0'] else: contigs = [contigs] print('DEBUG: ',contigs) pdb_map = get_mappings(ContigMap(parse,contigs)) print('DEBUG: ',pdb_map) print('DEBUG: ',pdb_map['con_ref_idx0']) roi = [x[1]-1 for x in pdb_map['con_ref_pdb_idx']] colormap = {0:'#D3D3D3', 1:'#F74CFF'} colors = {i+1: colormap[1] if i in roi else colormap[0] for i in range(parse['xyz'].shape[0])} view.setStyle({"cartoon": {"colorscheme": {"prop": "resi", "map": colors}}}) view.zoomTo() output = view._make_html().replace("'", '"') print(view._make_html()) x = f""" {output} """ # do not use ' in this input return f"""""", output_name def fetch_pdb(pdb_id=None): if pdb_id is None or pdb_id == "": return None else: os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_id}.pdb") return f"{pdb_id}.pdb" # MSA AND PSSM GUIDANCE def save_pssm(file_upload): filename = file_upload.name orig_name = file_upload.orig_name if filename.split('.')[-1] in ['fasta', 'a3m']: return msa_to_pssm(file_upload) return filename def msa_to_pssm(msa_file): # Define the lookup table for converting amino acids to indices aa_to_index = {'A': 0, 'R': 1, 'N': 2, 'D': 3, 'C': 4, 'Q': 5, 'E': 6, 'G': 7, 'H': 8, 'I': 9, 'L': 10, 'K': 11, 'M': 12, 'F': 13, 'P': 14, 'S': 15, 'T': 16, 'W': 17, 'Y': 18, 'V': 19, 'X': 20, '-': 21} # Open the FASTA file and read the sequences records = list(SeqIO.parse(msa_file.name, "fasta")) assert len(records) >= 1, "MSA must contain more than one protein sequecne." first_seq = str(records[0].seq) aligned_seqs = [first_seq] # print(aligned_seqs) # Perform sequence alignment using the Needleman-Wunsch algorithm aligner = Align.PairwiseAligner() aligner.open_gap_score = -0.7 aligner.extend_gap_score = -0.3 for record in records[1:]: alignment = aligner.align(first_seq, str(record.seq))[0] alignment = alignment.format().split("\n") al1 = alignment[0] al2 = alignment[2] al1_fin = "" al2_fin = "" percent_gap = al2.count('-')/ len(al2) if percent_gap > 0.4: continue for i in range(len(al1)): if al1[i] != '-': al1_fin += al1[i] al2_fin += al2[i] aligned_seqs.append(str(al2_fin)) # Get the length of the aligned sequences aligned_seq_length = len(first_seq) # Initialize the position scoring matrix matrix = np.zeros((22, aligned_seq_length)) # Iterate through the aligned sequences and count the amino acids at each position for seq in aligned_seqs: #print(seq) for i in range(aligned_seq_length): if i == len(seq): break amino_acid = seq[i] if amino_acid.upper() not in aa_to_index.keys(): continue else: aa_index = aa_to_index[amino_acid.upper()] matrix[aa_index, i] += 1 # Normalize the counts to get the frequency of each amino acid at each position matrix /= len(aligned_seqs) print(len(aligned_seqs)) matrix[20:,]=0 outdir = ".".join(msa_file.name.split('.')[:-1]) + ".csv" np.savetxt(outdir, matrix[:21,:].T, delimiter=",") return outdir def get_pssm(fasta_msa, input_pssm): if input_pssm not in ['',None]: outdir = input_pssm.name else: outdir = save_pssm(fasta_msa) pssm = np.loadtxt(outdir, delimiter=",", dtype=float) fig, ax = plt.subplots(figsize=(15,6)) plt.imshow(torch.permute(torch.tensor(pssm),(1,0))) return fig, outdir # 히어로 능력치 계산 함수 추가 def calculate_hero_stats(helix_bias, strand_bias, loop_bias, hydrophobic_score): stats = { 'strength': strand_bias * 20, # 베타시트 구조 기반 'flexibility': helix_bias * 20, # 알파헬릭스 구조 기반 'speed': loop_bias * 5, # 루프 구조 기반 'defense': abs(hydrophobic_score) if hydrophobic_score else 0 } return stats ##toggle options def toggle_seq_input(choice): if choice == "protein length": return gr.update(visible=True, value=None), gr.update(visible=False, value=None) elif choice == "custom sequence": return gr.update(visible=False, value=None), gr.update(visible=True, value=None) def toggle_secondary_structure(choice): if choice == "sliders": return gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=False, value=None) elif choice == "explicit": return gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=True, value=None) def generate_hero(name, strength, flexibility, speed, defense, size, abilities): try: # protein_diffusion_model 호출 results = protein_diffusion_model( sequence=None, seq_len=size, helix_bias=flexibility, strand_bias=strength, loop_bias=speed, secondary_structure=None, aa_bias=None, aa_bias_potential=None, num_steps="25", noise="normal", hydrophobic_target_score=str(-defense), hydrophobic_potential="2", contigs=None, pssm=None, seq_mask=None, str_mask=None, rewrite_pdb=None ) # 능력치 계산 stats = calculate_hero_stats(flexibility, strength, speed, defense) # 결과 반환 return ( results[2], # 3D 구조 create_radar_chart(stats), # 능력치 차트 generate_hero_description(name, stats, abilities) # 히어로 설명 ) except Exception as e: return ( gr.HTML("에러가 발생했습니다"), None, f"에러: {str(e)}" ) def create_radar_chart(stats): # 레이더 차트 생성 로직 categories = list(stats.keys()) values = list(stats.values()) fig = go.Figure(data=go.Scatterpolar( r=values, theta=categories, fill='toself' )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 1] )), showlegend=False ) return fig def generate_hero_description(name, stats, abilities): # 히어로 설명 생성 로직 description = f""" 히어로 이름: {name} 주요 능력: - 근력: {'★' * int(stats['strength'] * 5)} - 유연성: {'★' * int(stats['flexibility'] * 5)} - 스피드: {'★' * int(stats['speed'] * 5)} - 방어력: {'★' * int(stats['defense'] * 5)} 특수 능력: {', '.join(abilities)} """ return description # Gradio 인터페이스 수정 with gr.Blocks(theme='ParityError/Interstellar') as demo: with gr.Row(): with gr.Column(): gr.Markdown("# 🦸‍♂️ 슈퍼히어로 단백질 만들기") with gr.Tabs(): with gr.TabItem("히어로 디자인"): # 히어로 기본 정보 hero_name = gr.Textbox(label="히어로 이름", placeholder="당신의 히어로 이름을 지어주세요!") # 능력치 설정 gr.Markdown("### 💪 히어로 능력치 설정") with gr.Row(): strength = gr.Slider(minimum=0.0, maximum=0.05, label="💪 초강력(근력)", value=0.02) flexibility = gr.Slider(minimum=0.0, maximum=0.05, label="🤸‍♂️ 유연성", value=0.02) with gr.Row(): speed = gr.Slider(minimum=0.0, maximum=0.20, label="⚡ 스피드", value=0.1) defense = gr.Slider(minimum=-10, maximum=10, label="🛡️ 방어력", value=0) # 히어로 크기 설정 hero_size = gr.Slider(minimum=50, maximum=200, label="히어로 크기", value=100) # 특수 능력 설정 with gr.Accordion("🌟 특수 능력", open=False): special_ability = gr.CheckboxGroup( choices=["자가 회복", "원거리 공격", "방어막 생성"], label="특수 능력 선택" ) # 생성 버튼 create_btn = gr.Button("히어로 생성!", variant="primary") with gr.TabItem("Inputs"): gr.Markdown("""## INPUTS""") gr.Markdown("""#### Start Sequence Specify the protein length for complete unconditional generation, or scaffold a motif (or your name) using the custom sequence input""") seq_opt = gr.Radio(["protein length","custom sequence"], label="How would you like to specify the starting sequence?", value='protein length') sequence = gr.Textbox(label="custom sequence", lines=1, placeholder='AMINO ACIDS: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y\n MASK TOKEN: X', visible=False) seq_len = gr.Slider(minimum=5.0, maximum=250.0, label="protein length", value=100, visible=True) seq_opt.change(fn=toggle_seq_input, inputs=[seq_opt], outputs=[seq_len, sequence], queue=False) gr.Markdown("""### Optional Parameters""") with gr.Accordion(label='Secondary Structure',open=True): gr.Markdown("""Try changing the sliders or inputing explicit secondary structure conditioning for each residue""") sec_str_opt = gr.Radio(["sliders","explicit"], label="How would you like to specify secondary structure?", value='sliders') secondary_structure = gr.Textbox(label="secondary structure", lines=1, placeholder='HELIX = H STRAND = S LOOP = L MASK = X(must be the same length as input sequence)', visible=False) with gr.Column(): helix_bias = gr.Slider(minimum=0.0, maximum=0.05, label="helix bias", visible=True) strand_bias = gr.Slider(minimum=0.0, maximum=0.05, label="strand bias", visible=True) loop_bias = gr.Slider(minimum=0.0, maximum=0.20, label="loop bias", visible=True) sec_str_opt.change(fn=toggle_secondary_structure, inputs=[sec_str_opt], outputs=[helix_bias,strand_bias,loop_bias,secondary_structure], queue=False) with gr.Accordion(label='Amino Acid Compositional Bias',open=False): gr.Markdown("""Bias sequence composition for particular amino acids by specifying the one letter code followed by the fraction to bias. This can be input as a list for example: W0.2,E0.1""") with gr.Row(): aa_bias = gr.Textbox(label="aa bias", lines=1, placeholder='specify one letter AA and fraction to bias, for example W0.1 or M0.1,K0.1' ) aa_bias_potential = gr.Textbox(label="aa bias scale", lines=1, placeholder='AA Bias potential scale (recomended range 1.0-5.0)') with gr.Accordion(label='Hydrophobic Bias',open=False): gr.Markdown("""Bias for or against hydrophobic composition, to get more soluble proteins, bias away with a negative target score (ex. -5)""") with gr.Row(): hydrophobic_target_score = gr.Textbox(label="hydrophobic score", lines=1, placeholder='hydrophobic score to target (negative score is good for solublility)') hydrophobic_potential = gr.Textbox(label="hydrophobic potential scale", lines=1, placeholder='hydrophobic potential scale (recomended range 1.0-2.0)') with gr.Accordion(label='Diffusion Params',open=False): gr.Markdown("""Increasing T to more steps can be helpful for harder design challenges, sampling from different distributions can change the sequence and structural composition""") with gr.Row(): num_steps = gr.Textbox(label="T", lines=1, placeholder='number of diffusion steps (25 or less will speed things up)') noise = gr.Dropdown(['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'], label='noise type', value='normal') with gr.TabItem("Motif Selection"): gr.Markdown("""### Motif Selection Preview""") gr.Markdown('Contigs explained: to grab residues (seq and str) on a pdb chain you will provide the chain letter followed by a range of residues as indexed in the pdb file for example (A3-10) is the syntax to select residues 3-10 on chain A (the chain always needs to be specified). To add diffused residues to either side of this motif you can specify a range or discrete value without a chain letter infront. To add 15 residues before the motif and 20-30 residues (randomly sampled) after use the following syntax: 15,A3-10,20-30 commas are used to separate regions selected from the pdb and designed (diffused) resiudes which will be added. ') pdb_id_code = gr.Textbox(label="PDB ID", lines=1, placeholder='INPUT PDB ID TO FETCH (ex. 1DPX)', visible=True) contigs = gr.Textbox(label="contigs", lines=1, placeholder='specify contigs to grab particular residues from pdb ()', visible=True) gr.Markdown('Using the same contig syntax, seq or str of input motif residues can be masked, allowing the model to hold strucutre fixed and design sequence or vice-versa') with gr.Row(): seq_mask = gr.Textbox(label='seq mask',lines=1,placeholder='input residues to mask sequence') str_mask = gr.Textbox(label='str mask',lines=1,placeholder='input residues to mask structure') preview_viewer = gr.HTML() rewrite_pdb = gr.File(label='PDB file') preview_btn = gr.Button("Preview Motif") with gr.TabItem("MSA to PSSM"): gr.Markdown("""### MSA to PSSM Generation""") gr.Markdown('input either an MSA or PSSM to guide the model toward generating samples within your family of interest') with gr.Row(): fasta_msa = gr.File(label='MSA') input_pssm = gr.File(label='PSSM (.csv)') pssm = gr.File(label='Generated PSSM') pssm_view = gr.Plot(label='PSSM Viewer') pssm_gen_btn = gr.Button("Generate PSSM") with gr.Column(): gr.Markdown("## 🦸‍♂️ 히어로 프로필") # 히어로 시각화 hero_structure = gr.HTML(label="히어로 구조") # 능력치 레이더 차트 hero_stats = gr.Plot(label="능력치 분석") # 히어로 설명 hero_description = gr.Textbox(label="히어로 특성", lines=3) # 다운로드 버튼 download_btn = gr.Button("히어로 데이터 다운로드") gr.Markdown("""## OUTPUTS""") gr.Markdown("""#### Confidence score for generated structure at each timestep""") plddt_plot = gr.Plot(label='plddt at step t') gr.Markdown("""#### Output protein sequnece""") output_seq = gr.Textbox(label="sequence") gr.Markdown("""#### Download PDB file""") output_pdb = gr.File(label="PDB file") gr.Markdown("""#### Structure viewer""") output_viewer = gr.HTML() # 이벤트 연결 preview_btn.click(get_motif_preview,[pdb_id_code, contigs],[preview_viewer, rewrite_pdb]) pssm_gen_btn.click(get_pssm,[fasta_msa,input_pssm],[pssm_view, pssm]) create_btn.click( generate_hero, inputs=[hero_name, strength, flexibility, speed, defense, hero_size, special_ability], outputs=[hero_structure, hero_stats, hero_description] ) btn = gr.Button("GENERATE") btn.click(protein_diffusion_model, [sequence, seq_len, helix_bias, strand_bias, loop_bias, secondary_structure, aa_bias, aa_bias_potential, num_steps, noise, hydrophobic_target_score, hydrophobic_potential, contigs, pssm, seq_mask, str_mask, rewrite_pdb], [output_seq, output_pdb, output_viewer, plddt_plot]) demo.queue() demo.launch(debug=True)