Raphaël Bournhonesque commited on
Commit
df8a41e
·
1 Parent(s): d63d911

first commit

Browse files
Files changed (2) hide show
  1. app.py +94 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import time
3
+
4
+ import requests
5
+ import streamlit as st
6
+ from openfoodfacts.images import generate_image_url
7
+ from PIL import Image
8
+
9
+
10
+ @st.cache_data
11
+ def send_prediction_request(image_url: str, model_name: str, server_base_url: str):
12
+ return requests.get(
13
+ f"{server_base_url}/api/v1/images/predict",
14
+ params={"image_url": image_url, "models": model_name, "output_image": 1},
15
+ )
16
+
17
+
18
+ def get_product(barcode: str):
19
+ r = requests.get(f"https://world.openfoodfacts.org/api/v2/product/{barcode}")
20
+
21
+ if r.status_code == 404:
22
+ return None
23
+
24
+ return r.json()["product"]
25
+
26
+
27
+ def run(barcode: str, model_names: list[str], server_base_url: str):
28
+ product = get_product(barcode)
29
+ st.markdown(f"[Product page](https://world.openfoodfacts.org/product/{barcode})")
30
+
31
+ if not product:
32
+ st.error(f"Product {barcode} not found")
33
+ return
34
+
35
+ images = product.get("images", [])
36
+
37
+ if not images:
38
+ st.error(f"No images found for product {barcode}")
39
+ return
40
+
41
+ for image_id, _ in images.items():
42
+ if not image_id.isdigit():
43
+ continue
44
+
45
+ image_url = generate_image_url(barcode, f"{image_id}")
46
+
47
+ for model_name in model_names:
48
+ start = time.monotonic()
49
+ response = send_prediction_request(image_url, model_name, server_base_url)
50
+ elapsed = time.monotonic() - start
51
+
52
+ if response.headers["Content-Type"] != "image/jpeg":
53
+ st.error(f"Error: {response.text}")
54
+ continue
55
+ image = Image.open(io.BytesIO(response.content))
56
+ st.write(f"Image {image_id}")
57
+ st.image(image, caption=f"Model: {model_name} ({elapsed:.2f}s)")
58
+ st.divider()
59
+
60
+
61
+ st.title("Object detection demo")
62
+ st.markdown(
63
+ "This Streamlit is useful to test object detection models running in production at Open Food Facts."
64
+ )
65
+ default_barcode = st.query_params["barcode"] if "barcode" in st.query_params else ""
66
+ model_names = st.multiselect(
67
+ "Models",
68
+ options=[
69
+ "nutrition-table-yolo",
70
+ "nutrition-table",
71
+ "nutriscore",
72
+ "nutriscore-yolo",
73
+ "universal-logo-detector",
74
+ ],
75
+ help="Select the model(s) to use",
76
+ default=["nutrition-table-yolo", "nutrition-table"],
77
+ )
78
+ barcode = st.text_input(
79
+ "barcode", help="Barcode of the product", value=default_barcode
80
+ ).strip()
81
+ st.query_params["barcode"] = barcode
82
+
83
+ # Default server is staging
84
+ server_base_url = "https://robotoff.openfoodfacts.net"
85
+
86
+ if "env" in st.query_params:
87
+ if st.query_params["env"] == "prod":
88
+ server_base_url = "https://robotoff.openfoodfacts.net"
89
+ elif st.query_params["env"] == "dev":
90
+ server_base_url = "http://localhost:5000"
91
+
92
+
93
+ if barcode:
94
+ run(barcode, model_names, server_base_url)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ requests==2.32.3
2
+ streamlit==1.36.0
3
+ openfoodfacts==0.4.0
4
+ Pillow==10.4.0