Spaces:
Build error
Build error
import gradio as gr | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
with open("./config.yml", "r") as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
fp = hf_hub_download( | |
repo_id=config["repo"], filename=config["file"], | |
) | |
llm = Llama(model_path=fp) | |
def generate_text(input_text): | |
output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat']) | |
return output['choices'][0]['text'] | |
input_text = gr.inputs.Textbox(lines= 10, label="Enter your input text") | |
output_text = gr.outputs.Textbox(label="Output text") | |
description = f""" | |
### brought to you by OpenAccess AI Collective | |
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]}) | |
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM. | |
- This is running on a smaller, shared GPU, so it may take a few seconds to respond. | |
- Due to a [missing feature in Gradio](https://github.com/gradio-app/gradio/issues/3914), the chatbot interface will not show you your status in the queue. If it's stuck, be patient. | |
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. | |
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml) | |
- You can use instruct or chatbot mode by updating the README.md to either `app_file: instruct.py` or `app_file: chat.py` | |
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui) | |
""" | |
gr.Interface( | |
fn=generate_text, | |
inputs=input_text, | |
outputs=output_text, | |
title="GGML UI Demo", | |
description=description, | |
).queue(max_size=16, concurrency_count=1).launch() | |