import streamlit as st import pandas as pd from datasets import load_dataset from ast import literal_eval import altair as alt nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering" "translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering" ] audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"] cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"] multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"] tabular = ["tabular-clasification", "tabular-regression"] modalities = { "nlp": nlp_tasks, "audio": audio_tasks, "cv": cv_tasks, "multimodal": multimodal, "tabular": tabular, "rl": ["reinforcement-learning"] } def modality(row): pipeline = row["pipeline"] for modality, tasks in modalities.items(): if pipeline in tasks: return modality if type(pipeline) == "str": return "unk_modality" return None supported_revisions = ["27_09_22"] def process_dataset(version): # Load dataset at specified revision dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version) # Convert to pandas dataframe data = dataset["train"].to_pandas() # Add modality column data["modality"] = data.apply(modality, axis=1) # Bin the model card length into some bins data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000]) return data base = st.selectbox( 'What revision do you want to use', supported_revisions) data = process_dataset(base) total_samples = data.shape[0] st.metric(label="Total models", value=total_samples) tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"]) with tab1: st.header("Languages info") data.loc[data.languages == "False", 'languages'] = None data.loc[data.languages == {}, 'languages'] = None no_lang_count = data["languages"].isna().sum() data["languages"] = data["languages"].fillna('none') def make_list(row): languages = row["languages"] if languages == "none": return [] return literal_eval(languages) def language_count(row): languages = row["languages"] leng = len(languages) return leng data["languages"] = data.apply(make_list, axis=1) data["repos_count"] = data.apply(language_count, axis=1) models_with_langs = data[data["repos_count"] > 0] langs = models_with_langs["languages"].explode() langs = langs[langs != {}] total_langs = len(langs.unique()) col1, col2, col3 = st.columns(3) with col1: st.metric(label="Language Specified", value=total_samples-no_lang_count) with col2: st.metric(label="No Language Specified", value=no_lang_count) with col3: st.metric(label="Total Unique Languages", value=total_langs) st.subheader("Distribution of languages per model repo") linguality = st.selectbox( 'All or just Multilingual', ["All", "Just Multilingual", "Three or more languages"]) filter = 0 if linguality == "Just Multilingual": filter = 1 elif linguality == "Three or more languages": filter = 2 models_with_langs = data[data["repos_count"] > filter] df1 = models_with_langs['repos_count'].value_counts() st.bar_chart(df1) st.subheader("Distribution of repos per language") linguality_2 = st.selectbox( 'All or filtered', ["All", "No English", "Remove top 10"]) filter = 0 if linguality_2 == "All": filter = 0 elif linguality_2 == "No English": filter = 1 else: filter = 2 models_with_langs = data[data["repos_count"] > 0] langs = models_with_langs["languages"].explode() langs = langs[langs != {}] d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() if filter == 1: d = d.iloc[1:] elif filter == 2: d = d.iloc[10:] # Just keep top 25 to avoid vertical scroll d = d.iloc[:25] st.write(alt.Chart(d).mark_bar().encode( x='counts', y=alt.X('language', sort=None) )) st.subheader("Raw Data") col1, col2 = st.columns(2) with col1: st.dataframe(df1) with col2: d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() st.dataframe(d) with tab2: st.header("License info") no_license_count = data["license"].isna().sum() col1, col2, col3 = st.columns(3) with col1: st.metric(label="License Specified", value=total_samples-no_license_count) with col2: st.metric(label="No license Specified", value=no_license_count) with col3: st.metric(label="Total Unique Licenses", value=len(data["license"].unique())) st.subheader("Distribution of licenses per model repo") license_filter = st.selectbox( 'All or filtered', ["All", "No Apache 2.0", "Remove top 10"]) filter = 0 if license_filter == "All": filter = 0 elif license_filter == "No Apache 2.0": filter = 1 else: filter = 2 d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() if filter == 1: d = d.iloc[1:] elif filter == 2: d = d.iloc[10:] # Just keep top 25 to avoid vertical scroll d = d.iloc[:25] st.write(alt.Chart(d).mark_bar().encode( x='counts', y=alt.X('license', sort=None) )) st.text("There are some edge cases, as old repos using lists of licenses. We are working on fixing this.") st.subheader("Raw Data") d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() st.dataframe(d) with tab3: st.header("Pipeline info") no_pipeline_count = data["pipeline"].isna().sum() col1, col2, col3 = st.columns(3) with col1: st.metric(label="Pipeline Specified", value=total_samples-no_pipeline_count) with col2: st.metric(label="No pipeline Specified", value=no_pipeline_count) with col3: st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique())) st.subheader("Distribution of pipelines per model repo") pipeline_filter = st.selectbox( 'All or filtered', ["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"]) filter = 0 if pipeline_filter == "All": filter = 0 elif pipeline_filter == "NLP": filter = 1 elif pipeline_filter == "CV": filter = 2 elif pipeline_filter == "Audio": filter = 3 elif pipeline_filter == "RL": filter = 4 elif pipeline_filter == "Multimodal": filter = 5 elif pipeline_filter == "Tabular": filter = 6 d = data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() st.write(alt.Chart(d).mark_bar().encode( x='counts', y=alt.X('pipeline', sort=None) ))