#from utils.multiple_stream import create_interface import random import gradio as gr import json from utils.data import dataset from utils.multiple_stream import stream_data from pages.summarization_playground import get_model_batch_generation from pages.summarization_playground import custom_css def random_data_selection(): datapoint = random.choice(dataset) datapoint = datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue'] return datapoint def create_arena(): with open("prompt/prompt.json", "r") as file: json_data = file.read() prompts = json.loads(json_data) with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm",text_size="sm"), css=custom_css) as demo: with gr.Group(): datapoint = random_data_selection() gr.Markdown("""This arena is designed to compare different prompts. Click the button to stream responses from randomly shuffled prompts. Each column represents a response generated from one randomly selected prompt. Once the streaming is complete, you can choose the best response.\u2764\ufe0f""") data_textbox = gr.Textbox(label="Data", lines=10, placeholder="Datapoints to test...", value=datapoint) with gr.Row(): random_selection_button = gr.Button("Change Data") submit_button = gr.Button("✨ Click to Streaming ✨") random_selection_button.click( fn=random_data_selection, inputs=[], outputs=[data_textbox] ) with gr.Row(): columns = [gr.Textbox(label=f"Prompt {i+1}", lines=10) for i in range(len(prompts))] random.shuffle(prompts) prompts = prompts[:3] content_list = [prompt['prompt'] + '\n{' + data_textbox.value + '}\n\nsummary:' for prompt in prompts] model = get_model_batch_generation("Qwen/Qwen2-1.5B-Instruct") def start_streaming(): for data in stream_data(content_list, model): updates = [gr.update(value=data[i]) for i in range(len(columns))] yield tuple(updates) submit_button.click( fn=start_streaming, inputs=[], outputs=columns, show_progress=False ) choice = gr.Radio(label="Choose the best response:", choices=["Response 1", "Response 2", "Response 3"]) submit_button = gr.Button("Submit") submit_button.click( #fn=lambda response1, response2, response3, choice: save_to_db(eval(choice.lower())), inputs=[choice], outputs=f"Response '{choice}' saved successfully!" ) return demo if __name__ == "__main__": demo = create_arena() demo.queue() demo.launch()