Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
·
309f86b
1
Parent(s):
f276c92
update
Browse files- utils/model.py +37 -30
utils/model.py
CHANGED
@@ -60,35 +60,42 @@ class Model(torch.nn.Module):
|
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
if streaming:
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
else:
|
93 |
# Non-streaming generation (unchanged)
|
94 |
outputs = self.model.generate(
|
@@ -98,4 +105,4 @@ class Model(torch.nn.Module):
|
|
98 |
temperature=temp,
|
99 |
eos_token_id=self.tokenizer.eos_token_id,
|
100 |
)
|
101 |
-
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
if streaming:
|
63 |
+
# Set up the initial generation parameters
|
64 |
+
gen_kwargs = {
|
65 |
+
"input_ids": input_ids,
|
66 |
+
"do_sample": True,
|
67 |
+
"temperature": temp,
|
68 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
69 |
+
"max_new_tokens": 1, # Generate one token at a time
|
70 |
+
"return_dict_in_generate": True,
|
71 |
+
"output_scores": True
|
72 |
+
}
|
73 |
+
|
74 |
+
# Generate and yield tokens one by one
|
75 |
+
generated_tokens = 0
|
76 |
+
batch_size = input_ids.shape[0]
|
77 |
+
active_sequences = torch.arange(batch_size)
|
78 |
+
|
79 |
+
while generated_tokens < max_length and len(active_sequences) > 0:
|
80 |
+
with torch.no_grad():
|
81 |
+
output = self.model.generate(**gen_kwargs)
|
82 |
+
|
83 |
+
next_tokens = output.sequences[:, -1].unsqueeze(-1)
|
84 |
+
|
85 |
+
# Yield the newly generated tokens for each sequence in the batch
|
86 |
+
for i, token in zip(active_sequences, next_tokens):
|
87 |
+
yield i, self.tokenizer.decode(token[0], skip_special_tokens=True)
|
88 |
+
|
89 |
+
# Update input_ids for the next iteration
|
90 |
+
gen_kwargs["input_ids"] = torch.cat([gen_kwargs["input_ids"], next_tokens], dim=-1)
|
91 |
+
generated_tokens += 1
|
92 |
+
|
93 |
+
# Check for completed sequences
|
94 |
+
completed = (next_tokens.squeeze(-1) == self.tokenizer.eos_token_id).nonzero().squeeze(-1)
|
95 |
+
active_sequences = torch.tensor([i for i in active_sequences if i not in completed])
|
96 |
+
if len(active_sequences) > 0:
|
97 |
+
gen_kwargs["input_ids"] = gen_kwargs["input_ids"][active_sequences]
|
98 |
+
|
99 |
else:
|
100 |
# Non-streaming generation (unchanged)
|
101 |
outputs = self.model.generate(
|
|
|
105 |
temperature=temp,
|
106 |
eos_token_id=self.tokenizer.eos_token_id,
|
107 |
)
|
108 |
+
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|