Chris-lab / utils /multiple_stream.py
kz209
update
162b68f
raw
history blame
2 kB
import copy
import random
import gradio as gr
TEST = """ Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have
showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal
reasoning tasks involving complex temporal logic. """
def generate_data_test():
"""Generator to yield words"""
temp = copy.deepcopy(TEST)
l1 = temp.split()
random.shuffle(l1)
temp = ' '.join(l1)
for word in temp.split(" "):
yield word + " "
def stream_data(content_list, model):
"""Stream data to three columns"""
outputs = ["" for _ in content_list]
# Use the gen method to handle batch generation
generator = model.gen(content_list, streaming=True)
while True:
updated = False
try:
id, word = next(generator) # Get the next generated word for the corresponding content
outputs[id] += f" {word}"
updated = True
except StopIteration:
break
if updated:
yield tuple(outputs)
def create_interface():
with gr.Blocks() as demo:
with gr.Group():
with gr.Row():
columns = [gr.Textbox(label=f"Column {i+1}", lines=10) for i in range(3)]
start_btn = gr.Button("Start Streaming")
def start_streaming():
content_list = [col.value for col in columns] # Get input texts from text boxes
for data in stream_data(content_list):
updates = [gr.update(value=data[i]) for i in range(len(columns))]
yield tuple(updates)
start_btn.click(
fn=start_streaming,
inputs=[],
outputs=columns,
show_progress=False
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue()
demo.launch()