alozowski HF staff commited on
Commit
ccd1d98
·
verified ·
1 Parent(s): f1e551a

submission-fix (#1039)

Browse files

- Use uv for dependencies and runtime (2620acfe2080a0b2b8b6139e9f1d1eba6ea3e0f7)
- Switch to uv in dev Dockerfile (b91f2b791918c02db1b7635d21b7dbde284938ba)
- Set logging level to WARNING (f6dd42cae1290960ee07f7caf9e8d20aa8eec6b1)
- Refactor model validation logic (0e60add1c9df5f43c2e3e3b920e5fcb0e58bd5f1)
- Improve model size calculation (9469eaec18aff6a0e88bc9361fb6bd6b637ac706)
- Replace Poetry with uv (d27998844b63b2eacb0fa32114cd7079c20d6639)
- Update backend to use uv (28fd56c9b310ceae547022f9d21d9375fa592e90)
- Fix weightsType casing (7f1a54e79105b3af55a31b7aa3160e222381e486)
- Minor changes (581b4b19243fa8975439b49ab07f8da8a88a1bb6)
- Correct text (deb47717036353ee8a8340b2ff28f6479580b72d)

Dockerfile CHANGED
@@ -8,23 +8,22 @@ COPY frontend/ ./
8
  RUN npm run build
9
 
10
  # Build backend
11
- FROM python:3.9-slim
 
12
  WORKDIR /app
13
 
14
  # Create non-root user
15
  RUN useradd -m -u 1000 user
16
 
17
- # Install poetry
18
- RUN pip install poetry
19
-
20
  # Create and configure cache directory
21
  RUN mkdir -p /app/.cache && \
22
  chown -R user:user /app
23
 
24
- # Copy and install backend dependencies
25
- COPY backend/pyproject.toml backend/poetry.lock* ./
26
- RUN poetry config virtualenvs.create false \
27
- && poetry install --no-interaction --no-ansi --no-root --only main
 
28
 
29
  # Copy backend code
30
  COPY backend/ .
@@ -60,4 +59,4 @@ USER user
60
  EXPOSE 7860
61
 
62
  # Start both servers with wait-for
63
- CMD ["sh", "-c", "uvicorn app.asgi:app --host 0.0.0.0 --port 7861 & while ! nc -z localhost 7861; do sleep 1; done && cd frontend && npm run serve"]
 
8
  RUN npm run build
9
 
10
  # Build backend
11
+ FROM ghcr.io/astral-sh/uv:python3.12-bookworm-slim
12
+
13
  WORKDIR /app
14
 
15
  # Create non-root user
16
  RUN useradd -m -u 1000 user
17
 
 
 
 
18
  # Create and configure cache directory
19
  RUN mkdir -p /app/.cache && \
20
  chown -R user:user /app
21
 
22
+ # Copy uv configuration files
23
+ COPY backend/pyproject.toml backend/uv.lock ./
24
+
25
+ # Install dependencies using uv
26
+ RUN uv sync --all-extras --frozen
27
 
28
  # Copy backend code
29
  COPY backend/ .
 
59
  EXPOSE 7860
60
 
61
  # Start both servers with wait-for
62
+ CMD ["sh", "-c", "uv run uvicorn app.asgi:app --host 0.0.0.0 --port 7861 & while ! nc -z localhost 7861; do sleep 1; done && cd frontend && npm run serve"]
backend/Dockerfile.dev CHANGED
@@ -1,25 +1,35 @@
1
- FROM python:3.9-slim
 
2
 
 
3
  WORKDIR /app
4
 
 
 
 
 
 
 
 
 
 
 
5
  # Install required system dependencies
6
  RUN apt-get update && apt-get install -y \
7
  build-essential \
8
  && rm -rf /var/lib/apt/lists/*
9
 
10
- # Install poetry
11
- RUN pip install poetry
12
 
13
- # Copy Poetry configuration files
14
- COPY pyproject.toml poetry.lock* ./
15
 
16
- # Install dependencies
17
- RUN poetry config virtualenvs.create false && \
18
- poetry install --no-interaction --no-ansi --no-root
19
 
20
- # Environment variables configuration for logs
21
- ENV PYTHONUNBUFFERED=1
22
- ENV LOG_LEVEL=INFO
23
 
24
  # In dev, mount volume directly
25
- CMD ["uvicorn", "app.asgi:app", "--host", "0.0.0.0", "--port", "7860", "--reload", "--log-level", "warning", "--no-access-log"]
 
1
+ # Use a Python image with uv pre-installed
2
+ FROM ghcr.io/astral-sh/uv:python3.12-bookworm-slim
3
 
4
+ # Set the working directory
5
  WORKDIR /app
6
 
7
+ # Enable bytecode compilation
8
+ ENV UV_COMPILE_BYTECODE=1
9
+
10
+ # Copy from the cache instead of linking since it's a mounted volume
11
+ ENV UV_LINK_MODE=copy
12
+
13
+ # Environment variables configuration for logs
14
+ ENV PYTHONUNBUFFERED=1
15
+ ENV LOG_LEVEL=INFO
16
+
17
  # Install required system dependencies
18
  RUN apt-get update && apt-get install -y \
19
  build-essential \
20
  && rm -rf /var/lib/apt/lists/*
21
 
22
+ # Copy uv configuration files
23
+ COPY pyproject.toml uv.lock ./
24
 
25
+ # Install dependencies using uv
26
+ RUN uv sync --frozen --no-install-project --no-dev
27
 
28
+ # Place executables in the environment at the front of the path
29
+ ENV PATH="/app/.venv/bin:$PATH"
 
30
 
31
+ # Reset the entrypoint, don't invoke `uv`
32
+ ENTRYPOINT []
 
33
 
34
  # In dev, mount volume directly
35
+ CMD ["uv" "run" "uvicorn", "app.asgi:app", "--host", "0.0.0.0", "--port", "7860", "--reload", "--log-level", "warning", "--no-access-log"]
backend/__init__.py ADDED
File without changes
backend/app/asgi.py CHANGED
@@ -44,18 +44,18 @@ LOGGING_CONFIG = {
44
  },
45
  "uvicorn.access": {
46
  "handlers": ["default"],
47
- "level": "INFO",
48
  "propagate": False,
49
  },
50
  "app": {
51
  "handlers": ["default"],
52
- "level": "INFO",
53
  "propagate": False,
54
  }
55
  },
56
  "root": {
57
  "handlers": ["default"],
58
- "level": "INFO",
59
  }
60
  }
61
 
 
44
  },
45
  "uvicorn.access": {
46
  "handlers": ["default"],
47
+ "level": "WARNING",
48
  "propagate": False,
49
  },
50
  "app": {
51
  "handlers": ["default"],
52
+ "level": "WARNING",
53
  "propagate": False,
54
  }
55
  },
56
  "root": {
57
  "handlers": ["default"],
58
+ "level": "WARNING",
59
  }
60
  }
61
 
backend/app/services/models.py CHANGED
@@ -382,26 +382,6 @@ class ModelService(HuggingFaceService):
382
  if field not in model_data:
383
  raise ValueError(f"Missing required field: {field}")
384
 
385
- # Check if model already exists in the system
386
- try:
387
- logger.info(LogFormatter.subsection("CHECKING EXISTING SUBMISSIONS"))
388
- existing_models = await self.get_models()
389
-
390
- # Check in all statuses (pending, evaluating, finished)
391
- for status, models in existing_models.items():
392
- for model in models:
393
- if model["name"] == model_data["model_id"]:
394
- error_msg = f"Model {model_data['model_id']} is already in the system with status: {status}"
395
- logger.error(LogFormatter.error("Submission rejected", error_msg))
396
- raise ValueError(error_msg)
397
-
398
- logger.info(LogFormatter.success("No existing submission found"))
399
- except ValueError:
400
- raise
401
- except Exception as e:
402
- logger.error(LogFormatter.error("Failed to check existing submissions", e))
403
- raise
404
-
405
  # Get model info and validate it exists on HuggingFace
406
  try:
407
  logger.info(LogFormatter.subsection("MODEL VALIDATION"))
@@ -412,6 +392,7 @@ class ModelService(HuggingFaceService):
412
  revision=model_data["revision"],
413
  token=self.token
414
  )
 
415
  if not model_info:
416
  raise Exception(f"Model {model_data['model_id']} not found on HuggingFace Hub")
417
 
@@ -420,6 +401,29 @@ class ModelService(HuggingFaceService):
420
  except Exception as e:
421
  logger.error(LogFormatter.error("Model validation failed", e))
422
  raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423
 
424
  # Validate model card
425
  valid, error, model_card = await self.validator.check_model_card(
@@ -434,7 +438,8 @@ class ModelService(HuggingFaceService):
434
  model_size, error = await self.validator.get_model_size(
435
  model_info,
436
  model_data["precision"],
437
- model_data["base_model"]
 
438
  )
439
  if model_size is None:
440
  logger.error(LogFormatter.error("Model size validation failed", error))
@@ -458,6 +463,11 @@ class ModelService(HuggingFaceService):
458
  raise Exception(error)
459
  logger.info(LogFormatter.success("Chat template validation passed"))
460
 
 
 
 
 
 
461
  # Create eval entry
462
  eval_entry = {
463
  "model": model_data["model_id"],
@@ -465,7 +475,7 @@ class ModelService(HuggingFaceService):
465
  "revision": model_info.sha,
466
  "precision": model_data["precision"],
467
  "params": model_size,
468
- "architectures": model_info.pipeline_tag if hasattr(model_info, 'pipeline_tag') else None,
469
  "weight_type": model_data["weight_type"],
470
  "status": "PENDING",
471
  "submitted_time": datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ"),
 
382
  if field not in model_data:
383
  raise ValueError(f"Missing required field: {field}")
384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385
  # Get model info and validate it exists on HuggingFace
386
  try:
387
  logger.info(LogFormatter.subsection("MODEL VALIDATION"))
 
392
  revision=model_data["revision"],
393
  token=self.token
394
  )
395
+
396
  if not model_info:
397
  raise Exception(f"Model {model_data['model_id']} not found on HuggingFace Hub")
398
 
 
401
  except Exception as e:
402
  logger.error(LogFormatter.error("Model validation failed", e))
403
  raise
404
+
405
+ # Update model revision with commit sha
406
+ model_data["revision"] = model_info.sha
407
+
408
+ # Check if model already exists in the system
409
+ try:
410
+ logger.info(LogFormatter.subsection("CHECKING EXISTING SUBMISSIONS"))
411
+ existing_models = await self.get_models()
412
+
413
+ # Check in all statuses (pending, evaluating, finished)
414
+ for status, models in existing_models.items():
415
+ for model in models:
416
+ if model["name"] == model_data["model_id"] and model["revision"] == model_data["revision"]:
417
+ error_msg = f"Model {model_data['model_id']} revision {model_data["revision"]} is already in the system with status: {status}"
418
+ logger.error(LogFormatter.error("Submission rejected", error_msg))
419
+ raise ValueError(error_msg)
420
+
421
+ logger.info(LogFormatter.success("No existing submission found"))
422
+ except ValueError:
423
+ raise
424
+ except Exception as e:
425
+ logger.error(LogFormatter.error("Failed to check existing submissions", e))
426
+ raise
427
 
428
  # Validate model card
429
  valid, error, model_card = await self.validator.check_model_card(
 
438
  model_size, error = await self.validator.get_model_size(
439
  model_info,
440
  model_data["precision"],
441
+ model_data["base_model"],
442
+ revision=model_data["revision"]
443
  )
444
  if model_size is None:
445
  logger.error(LogFormatter.error("Model size validation failed", error))
 
463
  raise Exception(error)
464
  logger.info(LogFormatter.success("Chat template validation passed"))
465
 
466
+
467
+ architectures = model_info.config.get("architectures", "")
468
+ if architectures:
469
+ architectures = ";".join(architectures)
470
+
471
  # Create eval entry
472
  eval_entry = {
473
  "model": model_data["model_id"],
 
475
  "revision": model_info.sha,
476
  "precision": model_data["precision"],
477
  "params": model_size,
478
+ "architectures": architectures,
479
  "weight_type": model_data["weight_type"],
480
  "status": "PENDING",
481
  "submitted_time": datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ"),
backend/app/utils/model_validation.py CHANGED
@@ -5,10 +5,12 @@ import re
5
  from typing import Tuple, Optional, Dict, Any
6
  import aiohttp
7
  from huggingface_hub import HfApi, ModelCard, hf_hub_download
 
8
  from transformers import AutoConfig, AutoTokenizer
9
  from app.config.base import HF_TOKEN, API
10
  from app.utils.logging import LogFormatter
11
 
 
12
  logger = logging.getLogger(__name__)
13
 
14
  class ModelValidator:
@@ -54,78 +56,78 @@ class ModelValidator:
54
  logger.error(LogFormatter.error(error_msg, e))
55
  return False, str(e), None
56
 
57
- async def get_safetensors_metadata(self, model_id: str, filename: str = "model.safetensors") -> Optional[Dict]:
58
  """Get metadata from a safetensors file"""
59
  try:
60
- url = f"{API['HUB']}/{model_id}/raw/main/{filename}"
61
- async with aiohttp.ClientSession() as session:
62
- async with session.get(url, headers=self.headers) as response:
63
- if response.status == 200:
64
- # Read only the first 32KB to get the metadata
65
- header = await response.content.read(32768)
66
- # Parse metadata length from the first 8 bytes
67
- metadata_len = int.from_bytes(header[:8], byteorder='little')
68
- metadata_bytes = header[8:8+metadata_len]
69
- return json.loads(metadata_bytes)
70
- return None
 
 
 
 
 
 
71
  except Exception as e:
72
- logger.warning(f"Failed to get safetensors metadata: {str(e)}")
73
  return None
74
-
75
  async def get_model_size(
76
  self,
77
  model_info: Any,
78
  precision: str,
79
- base_model: str
 
80
  ) -> Tuple[Optional[float], Optional[str]]:
81
  """Get model size in billions of parameters"""
82
  try:
83
  logger.info(LogFormatter.info(f"Checking model size for {model_info.modelId}"))
84
-
85
  # Check if model is adapter
86
  is_adapter = any(s.rfilename == "adapter_config.json" for s in model_info.siblings if hasattr(s, 'rfilename'))
87
-
88
  # Try to get size from safetensors first
89
  model_size = None
90
-
91
  if is_adapter and base_model:
92
  # For adapters, we need both adapter and base model sizes
93
- adapter_meta = await self.get_safetensors_metadata(model_info.id, "adapter_model.safetensors")
94
- base_meta = await self.get_safetensors_metadata(base_model)
95
-
96
  if adapter_meta and base_meta:
97
- adapter_size = sum(int(v.split(',')[0]) for v in adapter_meta.get("tensor_metadata", {}).values())
98
- base_size = sum(int(v.split(',')[0]) for v in base_meta.get("tensor_metadata", {}).values())
99
  model_size = (adapter_size + base_size) / (2 * 1e9) # Convert to billions, assuming float16
100
  else:
101
  # For regular models, just get the model size
102
- meta = await self.get_safetensors_metadata(model_info.id)
103
  if meta:
104
- total_params = sum(int(v.split(',')[0]) for v in meta.get("tensor_metadata", {}).values())
105
  model_size = total_params / (2 * 1e9) # Convert to billions, assuming float16
106
-
107
  if model_size is None:
108
- # Fallback: Try to get size from model name
109
- size_pattern = re.compile(r"(\d+\.?\d*)b") # Matches patterns like "7b", "13b", "1.1b"
110
- size_match = re.search(size_pattern, model_info.id.lower())
111
-
112
- if size_match:
113
- size_str = size_match.group(1)
114
- model_size = float(size_str)
115
- else:
116
- return None, "Could not determine model size from safetensors or model name"
117
-
118
  # Adjust size for GPTQ models
119
  size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
120
  model_size = round(size_factor * model_size, 3)
121
-
122
  logger.info(LogFormatter.success(f"Model size: {model_size}B parameters"))
123
  return model_size, None
124
-
125
  except Exception as e:
126
- error_msg = "Failed to get model size"
127
- logger.error(LogFormatter.error(error_msg, e))
128
  return None, str(e)
 
129
 
130
  async def check_chat_template(
131
  self,
 
5
  from typing import Tuple, Optional, Dict, Any
6
  import aiohttp
7
  from huggingface_hub import HfApi, ModelCard, hf_hub_download
8
+ from huggingface_hub import hf_api
9
  from transformers import AutoConfig, AutoTokenizer
10
  from app.config.base import HF_TOKEN, API
11
  from app.utils.logging import LogFormatter
12
 
13
+
14
  logger = logging.getLogger(__name__)
15
 
16
  class ModelValidator:
 
56
  logger.error(LogFormatter.error(error_msg, e))
57
  return False, str(e), None
58
 
59
+ async def get_safetensors_metadata(self, model_id: str, is_adapter: bool = False, revision: str = "main") -> Optional[Dict]:
60
  """Get metadata from a safetensors file"""
61
  try:
62
+ if is_adapter:
63
+ metadata = await asyncio.to_thread(
64
+ hf_api.parse_safetensors_file_metadata,
65
+ model_id,
66
+ "adapter_model.safetensors",
67
+ token=self.token,
68
+ revision=revision,
69
+ )
70
+ else:
71
+ metadata = await asyncio.to_thread(
72
+ hf_api.get_safetensors_metadata,
73
+ repo_id=model_id,
74
+ token=self.token,
75
+ revision=revision,
76
+ )
77
+ return metadata
78
+
79
  except Exception as e:
80
+ logger.error(f"Failed to get safetensors metadata: {str(e)}")
81
  return None
82
+
83
  async def get_model_size(
84
  self,
85
  model_info: Any,
86
  precision: str,
87
+ base_model: str,
88
+ revision: str
89
  ) -> Tuple[Optional[float], Optional[str]]:
90
  """Get model size in billions of parameters"""
91
  try:
92
  logger.info(LogFormatter.info(f"Checking model size for {model_info.modelId}"))
93
+
94
  # Check if model is adapter
95
  is_adapter = any(s.rfilename == "adapter_config.json" for s in model_info.siblings if hasattr(s, 'rfilename'))
96
+
97
  # Try to get size from safetensors first
98
  model_size = None
99
+
100
  if is_adapter and base_model:
101
  # For adapters, we need both adapter and base model sizes
102
+ adapter_meta = await self.get_safetensors_metadata(model_info.id, is_adapter=True, revision=revision)
103
+ base_meta = await self.get_safetensors_metadata(base_model, revision="main")
104
+
105
  if adapter_meta and base_meta:
106
+ adapter_size = sum(adapter_meta.parameter_count.values())
107
+ base_size = sum(base_meta.parameter_count.values())
108
  model_size = (adapter_size + base_size) / (2 * 1e9) # Convert to billions, assuming float16
109
  else:
110
  # For regular models, just get the model size
111
+ meta = await self.get_safetensors_metadata(model_info.id, revision=revision)
112
  if meta:
113
+ total_params = sum(meta.parameter_count.values())
114
  model_size = total_params / (2 * 1e9) # Convert to billions, assuming float16
115
+
116
  if model_size is None:
117
+ # If model size could not be determined, return an error
118
+ return None, "Model size could not be determined"
119
+
 
 
 
 
 
 
 
120
  # Adjust size for GPTQ models
121
  size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
122
  model_size = round(size_factor * model_size, 3)
123
+
124
  logger.info(LogFormatter.success(f"Model size: {model_size}B parameters"))
125
  return model_size, None
126
+
127
  except Exception as e:
128
+ logger.error(LogFormatter.error(f"Error while determining model size: {e}"))
 
129
  return None, str(e)
130
+
131
 
132
  async def check_chat_template(
133
  self,
backend/pyproject.toml CHANGED
@@ -1,30 +1,54 @@
1
- [tool.poetry]
2
  name = "llm-leaderboard-backend"
3
  version = "0.1.0"
4
  description = "Backend for the Open LLM Leaderboard"
5
- authors = ["Your Name <your.email@example.com>"]
6
-
7
- [tool.poetry.dependencies]
8
- python = "^3.9"
9
- fastapi = "^0.104.1"
10
- uvicorn = {extras = ["standard"], version = "^0.24.0"}
11
- numpy = "1.24.3"
12
- pandas = "^2.0.0"
13
- datasets = "^2.0.0"
14
- pyarrow = "^14.0.1"
15
- python-multipart = "^0.0.6"
16
- huggingface-hub = "^0.19.0"
17
- transformers = "^4.35.0"
18
- safetensors = "^0.4.0"
19
- aiofiles = "^24.1.0"
20
- fastapi-cache2 = "^0.2.1"
21
-
22
- [tool.poetry.group.dev.dependencies]
23
- pytest = "^7.4.0"
24
- black = "^23.7.0"
25
- isort = "^5.12.0"
26
- flake8 = "^6.1.0"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  [build-system]
29
- requires = ["poetry-core>=1.0.0"]
30
- build-backend = "poetry.core.masonry.api"
 
 
 
 
1
+ [project]
2
  name = "llm-leaderboard-backend"
3
  version = "0.1.0"
4
  description = "Backend for the Open LLM Leaderboard"
5
+ requires-python = "==3.12.1"
6
+
7
+ dependencies = [
8
+ "fastapi >=0.115.6",
9
+ "uvicorn >=0.34.0",
10
+ "numpy >=2.2.0",
11
+ "pandas >=2.2.3",
12
+ "datasets >=3.2.0",
13
+ "pyarrow >=18.1.0",
14
+ "python-multipart >=0.0.20",
15
+ "huggingface-hub >=0.27.0",
16
+ "transformers >=4.47.0",
17
+ "safetensors >=0.4.5",
18
+ "aiofiles >=24.1.0",
19
+ "fastapi-cache2 >=0.2.1",
20
+ ]
21
+
22
+ [project.optional-dependencies]
23
+ dev = [
24
+ "pytest >=8.3.4",
25
+ "black >=24.10.0",
26
+ "isort >=5.13.2",
27
+ "flake8 >=7.1.1",
28
+ ]
29
+
30
+ [tool.ruff]
31
+ line-length = 120
32
+ target-version = "py312"
33
+ include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
34
+ ignore=["I","EM","FBT","TRY003","S101","D101","D102","D103","D104","D105","G004","D107","FA102"]
35
+ fixable=["ALL"]
36
+ select=["ALL"]
37
+
38
+ [tool.ruff.lint]
39
+ select = ["E", "F"]
40
+ fixable = ["ALL"]
41
+ ignore = ["E501"] # line too long (black is taking care of this)
42
+
43
+ [tool.isort]
44
+ profile = "black"
45
+
46
+ [tool.black]
47
+ line-length = 119
48
 
49
  [build-system]
50
+ requires = ["hatchling>=1.0.0"]
51
+ build-backend = "hatchling.build"
52
+
53
+ [tool.hatch.build.targets.wheel]
54
+ packages = ["backend"]
backend/uv.lock ADDED
The diff for this file is too large to render. See raw diff
 
docker-compose.yml CHANGED
@@ -1,5 +1,3 @@
1
- version: '3.8'
2
-
3
  services:
4
  backend:
5
  build:
@@ -15,7 +13,7 @@ services:
15
  - ENVIRONMENT=${ENVIRONMENT:-development}
16
  - HF_TOKEN=${HF_TOKEN}
17
  - HF_HOME=${HF_HOME:-/.cache}
18
- command: uvicorn app.asgi:app --host 0.0.0.0 --port 8000 --reload
19
 
20
  frontend:
21
  build:
 
 
 
1
  services:
2
  backend:
3
  build:
 
13
  - ENVIRONMENT=${ENVIRONMENT:-development}
14
  - HF_TOKEN=${HF_TOKEN}
15
  - HF_HOME=${HF_HOME:-/.cache}
16
+ command: uv run uvicorn app.asgi:app --host 0.0.0.0 --port 8000 --reload
17
 
18
  frontend:
19
  build:
frontend/src/pages/AddModelPage/components/ModelSubmissionForm/ModelSubmissionForm.js CHANGED
@@ -113,7 +113,7 @@ const HELP_TEXTS = {
113
  Chat Template Support
114
  </Typography>
115
  <Typography variant="body2" sx={{ opacity: 0.9, lineHeight: 1.4 }}>
116
- Activates automatically for chat models. Uses the standardized Hugging
117
  Face chat template for consistent prompt formatting during evaluation.
118
  Required for models using RLHF, DPO, or instruction fine-tuning.
119
  </Typography>
@@ -137,7 +137,7 @@ function ModelSubmissionForm({ user, isAuthenticated }) {
137
  isChatModel: false,
138
  useChatTemplate: false,
139
  precision: "float16",
140
- weightsType: "original",
141
  baseModel: "",
142
  });
143
  const [error, setError] = useState(null);
@@ -333,7 +333,7 @@ function ModelSubmissionForm({ user, isAuthenticated }) {
333
  isChatModel: false,
334
  useChatTemplate: false,
335
  precision: "float16",
336
- weightsType: "original",
337
  baseModel: "",
338
  });
339
  }}
@@ -482,7 +482,7 @@ function ModelSubmissionForm({ user, isAuthenticated }) {
482
  onChange={handleChange}
483
  />
484
  }
485
- label="Uses Chat Template"
486
  />
487
  <InfoIconWithTooltip tooltip={HELP_TEXTS.chatTemplate} />
488
  </Stack>
@@ -536,13 +536,13 @@ function ModelSubmissionForm({ user, isAuthenticated }) {
536
  </FormControl>
537
  </Grid>
538
 
539
- {formData.weightsType !== "original" && (
540
  <Grid item xs={12}>
541
  <TextField
542
  fullWidth
543
  required={
544
- formData.weightsType === "delta" ||
545
- formData.weightsType === "adapter"
546
  }
547
  name="baseModel"
548
  label="Base Model"
 
113
  Chat Template Support
114
  </Typography>
115
  <Typography variant="body2" sx={{ opacity: 0.9, lineHeight: 1.4 }}>
116
+ Activates automatically for chat models. It uses the standardized Hugging
117
  Face chat template for consistent prompt formatting during evaluation.
118
  Required for models using RLHF, DPO, or instruction fine-tuning.
119
  </Typography>
 
137
  isChatModel: false,
138
  useChatTemplate: false,
139
  precision: "float16",
140
+ weightsType: "Original",
141
  baseModel: "",
142
  });
143
  const [error, setError] = useState(null);
 
333
  isChatModel: false,
334
  useChatTemplate: false,
335
  precision: "float16",
336
+ weightsType: "Original",
337
  baseModel: "",
338
  });
339
  }}
 
482
  onChange={handleChange}
483
  />
484
  }
485
+ label="Use Chat Template"
486
  />
487
  <InfoIconWithTooltip tooltip={HELP_TEXTS.chatTemplate} />
488
  </Stack>
 
536
  </FormControl>
537
  </Grid>
538
 
539
+ {formData.weightsType !== "Original" && (
540
  <Grid item xs={12}>
541
  <TextField
542
  fullWidth
543
  required={
544
+ formData.weightsType === "Delta" ||
545
+ formData.weightsType === "Adapter"
546
  }
547
  name="baseModel"
548
  label="Base Model"