File size: 4,507 Bytes
28a039d
 
7172378
28a039d
 
 
 
 
 
 
7172378
 
28a039d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from typing import List, Optional
import logging
import dotenv
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation
from presidio_analyzer.nlp_engine import NlpArtifacts

logger = logging.getLogger("presidio-streamlit")

class TextAnalyticsWrapper(EntityRecognizer):
    from azure.ai.textanalytics._models import PiiEntityCategory
    TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory]

    def __init__(
        self,
        supported_entities: Optional[List[str]] = None,
        supported_language: str = "en",
        ta_client: Optional[TextAnalyticsClient] = None,
        ta_key: Optional[str] = None,
        ta_endpoint: Optional[str] = None,
    ):
        """
        Wrapper for the Azure Text Analytics client
        :param ta_client: object of type TextAnalyticsClient
        :param ta_key: Azure cognitive Services for Language key
        :param ta_endpoint: Azure cognitive Services for Language endpoint
        """

        if not supported_entities:
            supported_entities = self.TA_SUPPORTED_ENTITIES

        super().__init__(
            supported_entities=supported_entities,
            supported_language=supported_language,
            name="Azure Text Analytics PII",
        )

        self.ta_key = ta_key
        self.ta_endpoint = ta_endpoint

        if not ta_client:
            ta_client = self.__authenticate_client(ta_key, ta_endpoint)
        self.ta_client = ta_client

    @staticmethod
    def __authenticate_client(key: str, endpoint: str):
        ta_credential = AzureKeyCredential(key)
        text_analytics_client = TextAnalyticsClient(
            endpoint=endpoint, credential=ta_credential
        )
        return text_analytics_client

    def analyze(
        self, text: str, entities: List[str] = None, nlp_artifacts: NlpArtifacts = None
    ) -> List[RecognizerResult]:
        if not entities:
            entities = []
        response = self.ta_client.recognize_pii_entities(
            [text], language=self.supported_language
        )
        results = [doc for doc in response if not doc.is_error]
        recognizer_results = []
        for res in results:
            for entity in res.entities:
                if entity.category not in self.supported_entities:
                    continue
                analysis_explanation = TextAnalyticsWrapper._build_explanation(
                    original_score=entity.confidence_score,
                    entity_type=entity.category,
                )
                recognizer_results.append(
                    RecognizerResult(
                        entity_type=entity.category,
                        start=entity.offset,
                        end=entity.offset + len(entity.text),
                        score=entity.confidence_score,
                        analysis_explanation=analysis_explanation,
                    )
                )

        return recognizer_results

    @staticmethod
    def _build_explanation(
        original_score: float, entity_type: str
    ) -> AnalysisExplanation:
        explanation = AnalysisExplanation(
            recognizer=TextAnalyticsWrapper.__class__.__name__,
            original_score=original_score,
            textual_explanation=f"Identified as {entity_type} by Text Analytics",
        )
        return explanation

    def load(self) -> None:
        pass


if __name__ == "__main__":
    import presidio_helpers
    dotenv.load_dotenv()
    text = """
    Here are a few example sentences we currently support:

    Hello, my name is David Johnson and I live in Maine.
    My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
    
    On September 18 I visited microsoft.com and sent an email to [email protected],  from the IP 192.168.0.1.
    
    My passport: 191280342 and my phone number: (212) 555-1234.
    
    This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544?
    
    Kate's social security number is 078-05-1126.  Her driver license? it is 1234567A.
    """
    analyzer = presidio_helpers.analyzer_engine(
        model_path="Azure Text Analytics PII",
        ta_key=os.environ["TA_KEY"],
        ta_endpoint=os.environ["TA_ENDPOINT"],
    )
    analyzer.analyze(text=text, language="en")