# Import libraries import cv2 from ultralytics import YOLO import gradio as gr # Define constants ENTITIES_COLORS = { "Caption": (191, 100, 21), "Footnote": (2, 62, 115), "Formula": (140, 80, 58), "List-item": (168, 181, 69), "Page-footer": (2, 69, 84), "Page-header": (83, 115, 106), "Picture": (255, 72, 88), "Section-header": (0, 204, 192), "Table": (116, 127, 127), "Text": (0, 153, 221), "Title": (196, 51, 2) } BOX_PADDING = 2 # Load models DETECTION_MODEL = YOLO("models/yolov10x_best.pt") def detect(image_path): """ Output inference image with bounding box Args: - image: to check for checkboxes Return: image with bounding boxes drawn """ image = cv2.imread(image_path) if image is None: return image # Predict on image results = DETECTION_MODEL.predict(source=image, conf=0.2, iou=0.8) # Predict on image boxes = results[0].boxes # Get bounding boxes if len(boxes) == 0: return image # Get bounding boxes for box in boxes: detection_class_conf = round(box.conf.item(), 2) cls = list(ENTITIES_COLORS)[int(box.cls)] # Get start and end points of the current box start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1])) end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3])) # 01. DRAW BOUNDING BOX OF OBJECT line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 image = cv2.rectangle(img=image, pt1=start_box, pt2=end_box, color=ENTITIES_COLORS[cls], thickness = line_thickness) # Draw the box with predefined colors # 02. DRAW LABEL text = cls + " " + str(detection_class_conf) # Get text dimensions to draw wrapping box font_thickness = max(line_thickness - 1, 1) (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness) # Draw wrapping box for text image = cv2.rectangle(img=image, pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2), pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]), color=ENTITIES_COLORS[cls], thickness=-1) # Put class name on image start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING) image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness) return image iface = gr.Interface(fn=detect, inputs=gr.Image(label="Upload scanned document", type="filepath"), outputs="image") iface.launch()