import json from dataclasses import asdict, dataclass, field from typing import Literal, Optional @dataclass class FreezeArguments: r""" Arguments pertaining to the freeze (partial-parameter) training. """ name_module_trainable: Optional[str] = field( default="mlp", metadata={ "help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \ Use commas to separate multiple modules. \ LLaMA choices: ["mlp", "self_attn"], \ BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \ Qwen choices: ["mlp", "attn"], \ Phi choices: ["mlp", "mixer"], \ Others choices: the same as LLaMA.' }, ) num_layer_trainable: Optional[int] = field( default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."} ) @dataclass class LoraArguments: r""" Arguments pertaining to the LoRA training. """ additional_target: Optional[str] = field( default=None, metadata={ "help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint." }, ) lora_alpha: Optional[int] = field( default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."} ) lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."}) lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}) lora_target: Optional[str] = field( default=None, metadata={ "help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \ LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \ BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \ Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \ Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \ Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \ Others choices: the same as LLaMA.' }, ) lora_bf16_mode: Optional[bool] = field( default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."} ) create_new_adapter: Optional[bool] = field( default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."} ) @dataclass class RLHFArguments: r""" Arguments pertaining to the PPO and DPO training. """ dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."}) dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field( default="sigmoid", metadata={"help": "The type of DPO loss to use."} ) dpo_ftx: Optional[float] = field( default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."} ) ppo_buffer_size: Optional[int] = field( default=1, metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}, ) ppo_epochs: Optional[int] = field( default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."} ) ppo_logger: Optional[str] = field( default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'} ) ppo_score_norm: Optional[bool] = field( default=False, metadata={"help": "Use score normalization in PPO training."} ) ppo_target: Optional[float] = field( default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."} ) ppo_whiten_rewards: Optional[bool] = field( default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."} ) ref_model: Optional[str] = field( default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."} ) ref_model_adapters: Optional[str] = field( default=None, metadata={"help": "Path to the adapters of the reference model."} ) ref_model_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the reference model."} ) reward_model: Optional[str] = field( default=None, metadata={"help": "Path to the reward model used for the PPO training."} ) reward_model_adapters: Optional[str] = field( default=None, metadata={"help": "Path to the adapters of the reward model."} ) reward_model_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the reward model."} ) reward_model_type: Optional[Literal["lora", "full", "api"]] = field( default="lora", metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}, ) @dataclass class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments): r""" Arguments pertaining to which techniques we are going to fine-tuning with. """ stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field( default="sft", metadata={"help": "Which stage will be performed in training."} ) finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field( default="lora", metadata={"help": "Which fine-tuning method to use."} ) plot_loss: Optional[bool] = field( default=False, metadata={"help": "Whether or not to save the training loss curves."} ) def __post_init__(self): def split_arg(arg): if isinstance(arg, str): return [item.strip() for item in arg.split(",")] return arg self.name_module_trainable = split_arg(self.name_module_trainable) self.lora_alpha = self.lora_alpha or self.lora_rank * 2 self.lora_target = split_arg(self.lora_target) self.additional_target = split_arg(self.additional_target) assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." if self.stage == "ppo" and self.reward_model is None: raise ValueError("Reward model is necessary for PPO training.") if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.") def save_to_json(self, json_path: str): r"""Saves the content of this instance in JSON format inside `json_path`.""" json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n" with open(json_path, "w", encoding="utf-8") as f: f.write(json_string) @classmethod def load_from_json(cls, json_path: str): r"""Creates an instance from the content of `json_path`.""" with open(json_path, "r", encoding="utf-8") as f: text = f.read() return cls(**json.loads(text))