officialhimanshu595's picture
Upload folder using huggingface_hub
20076b6 verified
import inspect
from typing import TYPE_CHECKING
import torch
from peft import LoraConfig, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras.logging import get_logger
from .utils import find_all_linear_modules
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def init_adapter(
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
) -> "PreTrainedModel":
r"""
Initializes the adapters.
Support full-parameter, freeze and LoRA training.
Note that the trainable parameters must be cast to float32.
"""
if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Adapter is not found at evaluation, load the base model.")
return model
if finetuning_args.finetuning_type == "full" and is_trainable:
logger.info("Fine-tuning method: Full")
model = model.float()
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
num_layers = (
getattr(model.config, "num_hidden_layers", None)
or getattr(model.config, "num_layers", None)
or getattr(model.config, "n_layer", None)
)
if not num_layers:
raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] # noqa: C416
trainable_layers = []
for module_name in finetuning_args.name_module_trainable:
for idx in trainable_layer_ids:
trainable_layers.append("{:d}.{}".format(idx, module_name))
for name, param in model.named_parameters():
if not any(trainable_layer in name for trainable_layer in trainable_layers):
param.requires_grad_(False)
else:
param.data = param.data.to(torch.float32)
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model = PeftModel.from_pretrained(model, adapter)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model)
else:
target_modules = finetuning_args.lora_target
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
}
if model_args.use_unsloth:
from unsloth import FastLlamaModel, FastMistralModel # type: ignore
unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length}
if "loftq_config" in inspect.signature(FastLlamaModel.get_peft_model).parameters:
unsloth_peft_kwargs["loftq_config"] = {}
if getattr(model.config, "model_type", None) == "llama":
model = FastLlamaModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
elif getattr(model.config, "model_type", None) == "mistral":
model = FastMistralModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
raise NotImplementedError
else:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
modules_to_save=finetuning_args.additional_target,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.bfloat16 if finetuning_args.lora_bf16_mode else torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model