Spaces:
Runtime error
Runtime error
import inspect | |
from typing import TYPE_CHECKING | |
import torch | |
from peft import LoraConfig, PeftModel, TaskType, get_peft_model | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from ..extras.logging import get_logger | |
from .utils import find_all_linear_modules | |
if TYPE_CHECKING: | |
from transformers.modeling_utils import PreTrainedModel | |
from ..hparams import FinetuningArguments, ModelArguments | |
logger = get_logger(__name__) | |
def init_adapter( | |
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool | |
) -> "PreTrainedModel": | |
r""" | |
Initializes the adapters. | |
Support full-parameter, freeze and LoRA training. | |
Note that the trainable parameters must be cast to float32. | |
""" | |
if (not is_trainable) and model_args.adapter_name_or_path is None: | |
logger.info("Adapter is not found at evaluation, load the base model.") | |
return model | |
if finetuning_args.finetuning_type == "full" and is_trainable: | |
logger.info("Fine-tuning method: Full") | |
model = model.float() | |
if finetuning_args.finetuning_type == "freeze" and is_trainable: | |
logger.info("Fine-tuning method: Freeze") | |
num_layers = ( | |
getattr(model.config, "num_hidden_layers", None) | |
or getattr(model.config, "num_layers", None) | |
or getattr(model.config, "n_layer", None) | |
) | |
if not num_layers: | |
raise ValueError("Current model does not support freeze tuning.") | |
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 | |
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] | |
else: # fine-tuning the first n layers if num_layer_trainable < 0 | |
trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] # noqa: C416 | |
trainable_layers = [] | |
for module_name in finetuning_args.name_module_trainable: | |
for idx in trainable_layer_ids: | |
trainable_layers.append("{:d}.{}".format(idx, module_name)) | |
for name, param in model.named_parameters(): | |
if not any(trainable_layer in name for trainable_layer in trainable_layers): | |
param.requires_grad_(False) | |
else: | |
param.data = param.data.to(torch.float32) | |
if finetuning_args.finetuning_type == "lora": | |
logger.info("Fine-tuning method: LoRA") | |
adapter_to_resume = None | |
if model_args.adapter_name_or_path is not None: | |
is_mergeable = True | |
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable | |
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter." | |
is_mergeable = False | |
if is_deepspeed_zero3_enabled(): | |
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3." | |
is_mergeable = False | |
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable): | |
adapter_to_merge = model_args.adapter_name_or_path[:-1] | |
adapter_to_resume = model_args.adapter_name_or_path[-1] | |
else: | |
adapter_to_merge = model_args.adapter_name_or_path | |
for adapter in adapter_to_merge: | |
model = PeftModel.from_pretrained(model, adapter) | |
model = model.merge_and_unload() | |
if len(adapter_to_merge) > 0: | |
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge))) | |
if adapter_to_resume is not None: # resume lora training | |
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable) | |
if is_trainable and adapter_to_resume is None: # create new lora weights while training | |
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": | |
target_modules = find_all_linear_modules(model) | |
else: | |
target_modules = finetuning_args.lora_target | |
peft_kwargs = { | |
"r": finetuning_args.lora_rank, | |
"target_modules": target_modules, | |
"lora_alpha": finetuning_args.lora_alpha, | |
"lora_dropout": finetuning_args.lora_dropout, | |
} | |
if model_args.use_unsloth: | |
from unsloth import FastLlamaModel, FastMistralModel # type: ignore | |
unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length} | |
if "loftq_config" in inspect.signature(FastLlamaModel.get_peft_model).parameters: | |
unsloth_peft_kwargs["loftq_config"] = {} | |
if getattr(model.config, "model_type", None) == "llama": | |
model = FastLlamaModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs) | |
elif getattr(model.config, "model_type", None) == "mistral": | |
model = FastMistralModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs) | |
else: | |
raise NotImplementedError | |
else: | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
inference_mode=False, | |
modules_to_save=finetuning_args.additional_target, | |
**peft_kwargs, | |
) | |
model = get_peft_model(model, lora_config) | |
for param in filter(lambda p: p.requires_grad, model.parameters()): | |
param.data = param.data.to(torch.bfloat16 if finetuning_args.lora_bf16_mode else torch.float32) | |
if model_args.adapter_name_or_path is not None: | |
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path))) | |
return model | |