diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..706d749531ccd8484831ef23b6fc9712abf0dd9b
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,64 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
+weights/arknights/goldenglow/added_IVF299_Flat_nprobe_1_goldenglow_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/arknights/goldenglow/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/arknights/merc-w/added_IVF379_Flat_nprobe_1_merc-w_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/azur-lane/taihou/added_IVF993_Flat_nprobe_1_taihou_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/azur-lane/taihou/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/aru/added_IVF825_Flat_nprobe_1_aru_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/asuna/added_IVF807_Flat_nprobe_1_asuna_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/hina/added_IVF739_Flat_nprobe_1_hina_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/kazusa/added_IVF441_Flat_nprobe_1_kazusa_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/koyuki/added_IVF424_Flat_nprobe_1_koyuki_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/midori/added_IVF341_Flat_nprobe_1_midori_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/mika/added_IVF406_Flat_nprobe_1_mika_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/momoi/added_IVF376_Flat_nprobe_1_momoi_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/noa/added_IVF610_Flat_nprobe_1_noa_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/saki/added_IVF761_Flat_nprobe_1_saki_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/toki/added_IVF757_Flat_nprobe_1_toki_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/toki/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/yuuka/added_IVF809_Flat_nprobe_1_yuuka_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/genshin-impact/ayaka/added_IVF823_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/genshin-impact/ayaka/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/genshin-impact/kirara/added_IVF672_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/genshin-impact/kirara/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/bronya/added_IVF255_Flat_nprobe_1_bronya_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/bronya/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/herta/added_IVF189_Flat_nprobe_1_herta_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/herta/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/seele/added_IVF183_Flat_nprobe_1_seele_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/honkai-star-rail/seele/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/azusa/added_IVF629_Flat_nprobe_1_azusa_v2.index filter=lfs diff=lfs merge=lfs -text
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..01be85be14f159e517b379d9f8ea31b068fbd043
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 arkandash
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2219918590992db06dd891f43c83391d26102aa1
--- /dev/null
+++ b/README.md
@@ -0,0 +1,14 @@
+---
+title: Rvc Anigames V2
+emoji: 🦀
+colorFrom: blue
+colorTo: pink
+sdk: gradio
+sdk_version: 3.35.2
+app_file: app.py
+pinned: true
+license: mit
+duplicated_from: RRRea/rvc-anigames-v2
+---
+
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..a53282f5265f66ca10030e6e0190acfbee70e6bb
--- /dev/null
+++ b/app.py
@@ -0,0 +1,502 @@
+import os
+import glob
+import json
+import traceback
+import logging
+import gradio as gr
+import numpy as np
+import librosa
+import torch
+import asyncio
+import edge_tts
+import yt_dlp
+import ffmpeg
+import subprocess
+import sys
+import io
+import wave
+from datetime import datetime
+from fairseq import checkpoint_utils
+from lib.infer_pack.models import (
+ SynthesizerTrnMs256NSFsid,
+ SynthesizerTrnMs256NSFsid_nono,
+ SynthesizerTrnMs768NSFsid,
+ SynthesizerTrnMs768NSFsid_nono,
+)
+from vc_infer_pipeline import VC
+from config import Config
+config = Config()
+logging.getLogger("numba").setLevel(logging.WARNING)
+limitation = os.getenv("SYSTEM") == "spaces"
+
+audio_mode = []
+f0method_mode = []
+f0method_info = ""
+if limitation is True:
+ audio_mode = ["Upload audio", "TTS Audio"]
+ f0method_mode = ["pm", "harvest"]
+ f0method_info = "PM is fast, Harvest is good but extremely slow. (Default: PM)"
+else:
+ audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
+ f0method_mode = ["pm", "harvest", "crepe"]
+ f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
+
+def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
+ def vc_fn(
+ vc_audio_mode,
+ vc_input,
+ vc_upload,
+ tts_text,
+ tts_voice,
+ f0_up_key,
+ f0_method,
+ index_rate,
+ filter_radius,
+ resample_sr,
+ rms_mix_rate,
+ protect,
+ ):
+ try:
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
+ elif vc_audio_mode == "Upload audio":
+ if vc_upload is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = vc_upload
+ duration = audio.shape[0] / sampling_rate
+ if duration > 20 and limitation:
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ elif vc_audio_mode == "TTS Audio":
+ if len(tts_text) > 100 and limitation:
+ return "Text is too long", None
+ if tts_text is None or tts_voice is None:
+ return "You need to enter text and select a voice", None
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
+ vc_input = "tts.mp3"
+ times = [0, 0, 0]
+ f0_up_key = int(f0_up_key)
+ audio_opt = vc.pipeline(
+ hubert_model,
+ net_g,
+ 0,
+ audio,
+ vc_input,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ )
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
+ print(f"{model_title} | {info}")
+ return info, (tgt_sr, audio_opt)
+ except:
+ info = traceback.format_exc()
+ print(info)
+ return info, (None, None)
+ return vc_fn
+
+def load_model():
+ categories = []
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
+ folder_info = json.load(f)
+ for category_name, category_info in folder_info.items():
+ if not category_info['enable']:
+ continue
+ category_title = category_info['title']
+ category_folder = category_info['folder_path']
+ description = category_info['description']
+ models = []
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
+ models_info = json.load(f)
+ for character_name, info in models_info.items():
+ if not info['enable']:
+ continue
+ model_title = info['title']
+ model_name = info['model_path']
+ model_author = info.get("author", None)
+ model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
+ model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
+ cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
+ if_f0 = cpt.get("f0", 1)
+ version = cpt.get("version", "v1")
+ if version == "v1":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ model_version = "V1"
+ elif version == "v2":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
+ model_version = "V2"
+ del net_g.enc_q
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
+ net_g.eval().to(config.device)
+ if config.is_half:
+ net_g = net_g.half()
+ else:
+ net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
+ models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, model_index)))
+ categories.append([category_title, category_folder, description, models])
+ return categories
+
+def cut_vocal_and_inst(url, audio_provider, split_model):
+ if url != "":
+ if not os.path.exists("dl_audio"):
+ os.mkdir("dl_audio")
+ if audio_provider == "Youtube":
+ ydl_opts = {
+ 'format': 'bestaudio/best',
+ 'postprocessors': [{
+ 'key': 'FFmpegExtractAudio',
+ 'preferredcodec': 'wav',
+ }],
+ "outtmpl": 'dl_audio/youtube_audio',
+ }
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
+ ydl.download([url])
+ audio_path = "dl_audio/youtube_audio.wav"
+ else:
+ # Spotify doesnt work.
+ # Need to find other solution soon.
+ '''
+ command = f"spotdl download {url} --output dl_audio/.wav"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ audio_path = "dl_audio/spotify_audio.wav"
+ '''
+ if split_model == "htdemucs":
+ command = f"demucs --two-stems=vocals {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
+ else:
+ command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
+ else:
+ raise gr.Error("URL Required!")
+ return None, None, None, None
+
+def combine_vocal_and_inst(audio_data, audio_volume, split_model):
+ if not os.path.exists("output/result"):
+ os.mkdir("output/result")
+ vocal_path = "output/result/output.wav"
+ output_path = "output/result/combine.mp3"
+ if split_model == "htdemucs":
+ inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
+ else:
+ inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
+ with wave.open(vocal_path, "w") as wave_file:
+ wave_file.setnchannels(1)
+ wave_file.setsampwidth(2)
+ wave_file.setframerate(audio_data[0])
+ wave_file.writeframes(audio_data[1].tobytes())
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return output_path
+
+def load_hubert():
+ global hubert_model
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
+ ["hubert_base.pt"],
+ suffix="",
+ )
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(config.device)
+ if config.is_half:
+ hubert_model = hubert_model.half()
+ else:
+ hubert_model = hubert_model.float()
+ hubert_model.eval()
+
+def change_audio_mode(vc_audio_mode):
+ if vc_audio_mode == "Input path":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=True),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "Upload audio":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Audio.update(visible=True),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "Youtube":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=True),
+ gr.Textbox.update(visible=True),
+ gr.Dropdown.update(visible=True),
+ gr.Button.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Slider.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Button.update(visible=True),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "TTS Audio":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=True),
+ gr.Dropdown.update(visible=True)
+ )
+ else:
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Audio.update(visible=True),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+
+if __name__ == '__main__':
+ load_hubert()
+ categories = load_model()
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
+ with gr.Blocks(theme=gr.themes.Monochrome()) as app:
+ gr.Markdown(
+ "#
Multi Model RVC Inference\n"
+ "### Support v2 Model\n"
+ )
+ for (folder_title, folder, description, models) in categories:
+ with gr.TabItem(folder_title):
+ if description:
+ gr.Markdown(f"### {description}")
+ with gr.Tabs():
+ if not models:
+ gr.Markdown("# No Model Loaded.")
+ gr.Markdown("## Please add model or fix your model path.")
+ continue
+ for (name, title, author, cover, model_version, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
{title}
\n'+
+ f'
RVC {model_version} Model
\n'+
+ (f'
Model author: {author}
' if author else "")+
+ (f'

' if cover else "")+
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
+ # Input and Upload
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
+ vc_upload = gr.Audio(label="Upload audio file", visible=True, interactive=True)
+ # Youtube
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
+ # TTS
+ tts_text = gr.Textbox(visible=False, label="TTS text", info="Text to speech input")
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
+ with gr.Column():
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
+ f0method0 = gr.Radio(
+ label="Pitch extraction algorithm",
+ info=f0method_info,
+ choices=f0method_mode,
+ value="pm",
+ interactive=True
+ )
+ index_rate1 = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Retrieval feature ratio",
+ info="(Default: 0.6)",
+ value=0.6,
+ interactive=True,
+ )
+ filter_radius0 = gr.Slider(
+ minimum=0,
+ maximum=7,
+ label="Apply Median Filtering",
+ info="The value represents the filter radius and can reduce breathiness.",
+ value=3,
+ step=1,
+ interactive=True,
+ )
+ resample_sr0 = gr.Slider(
+ minimum=0,
+ maximum=48000,
+ label="Resample the output audio",
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
+ value=0,
+ step=1,
+ interactive=True,
+ )
+ rms_mix_rate0 = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Volume Envelope",
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
+ value=1,
+ interactive=True,
+ )
+ protect0 = gr.Slider(
+ minimum=0,
+ maximum=0.5,
+ label="Voice Protection",
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
+ value=0.4,
+ step=0.01,
+ interactive=True,
+ )
+ with gr.Column():
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
+ vc_convert = gr.Button("Convert", variant="primary")
+ vc_volume = gr.Slider(
+ minimum=0,
+ maximum=10,
+ label="Vocal volume",
+ value=4,
+ interactive=True,
+ step=1,
+ info="Adjust vocal volume (Default: 4}",
+ visible=False
+ )
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
+ vc_convert.click(
+ fn=vc_fn,
+ inputs=[
+ vc_audio_mode,
+ vc_input,
+ vc_upload,
+ tts_text,
+ tts_voice,
+ vc_transform0,
+ f0method0,
+ index_rate1,
+ filter_radius0,
+ resample_sr0,
+ rms_mix_rate0,
+ protect0,
+ ],
+ outputs=[vc_log ,vc_output]
+ )
+ vc_split.click(
+ fn=cut_vocal_and_inst,
+ inputs=[vc_link, vc_download_audio, vc_split_model],
+ outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input]
+ )
+ vc_combine.click(
+ fn=combine_vocal_and_inst,
+ inputs=[vc_output, vc_volume, vc_split_model],
+ outputs=[vc_combined_output]
+ )
+ vc_audio_mode.change(
+ fn=change_audio_mode,
+ inputs=[vc_audio_mode],
+ outputs=[
+ vc_input,
+ vc_upload,
+ vc_download_audio,
+ vc_link,
+ vc_split_model,
+ vc_split,
+ vc_vocal_preview,
+ vc_inst_preview,
+ vc_audio_preview,
+ vc_volume,
+ vc_combined_output,
+ vc_combine,
+ tts_text,
+ tts_voice
+ ]
+ )
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
\ No newline at end of file
diff --git a/config.py b/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..040a64d2c5ce4d7802bdf7f69321483b81008f08
--- /dev/null
+++ b/config.py
@@ -0,0 +1,106 @@
+import argparse
+import torch
+from multiprocessing import cpu_count
+
+class Config:
+ def __init__(self):
+ self.device = "cuda:0"
+ self.is_half = True
+ self.n_cpu = 0
+ self.gpu_name = None
+ self.gpu_mem = None
+ (
+ self.python_cmd,
+ self.listen_port,
+ self.colab,
+ self.noparallel,
+ self.noautoopen,
+ self.api
+ ) = self.arg_parse()
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
+
+ @staticmethod
+ def arg_parse() -> tuple:
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--port", type=int, default=7865, help="Listen port")
+ parser.add_argument(
+ "--pycmd", type=str, default="python", help="Python command"
+ )
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
+ parser.add_argument(
+ "--noparallel", action="store_true", help="Disable parallel processing"
+ )
+ parser.add_argument(
+ "--noautoopen",
+ action="store_true",
+ help="Do not open in browser automatically",
+ )
+ parser.add_argument("--api", action="store_true", help="Launch with api")
+ cmd_opts = parser.parse_args()
+
+ cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
+
+ return (
+ cmd_opts.pycmd,
+ cmd_opts.port,
+ cmd_opts.colab,
+ cmd_opts.noparallel,
+ cmd_opts.noautoopen,
+ cmd_opts.api
+ )
+
+ def device_config(self) -> tuple:
+ if torch.cuda.is_available():
+ i_device = int(self.device.split(":")[-1])
+ self.gpu_name = torch.cuda.get_device_name(i_device)
+ if (
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
+ or "P40" in self.gpu_name.upper()
+ or "1060" in self.gpu_name
+ or "1070" in self.gpu_name
+ or "1080" in self.gpu_name
+ ):
+ print("16系/10系显卡和P40强制单精度")
+ self.is_half = False
+
+ else:
+ self.gpu_name = None
+ self.gpu_mem = int(
+ torch.cuda.get_device_properties(i_device).total_memory
+ / 1024
+ / 1024
+ / 1024
+ + 0.4
+ )
+ elif torch.backends.mps.is_available():
+ print("没有发现支持的N卡, 使用MPS进行推理")
+ self.device = "mps"
+ self.is_half = False
+ else:
+ print("没有发现支持的N卡, 使用CPU进行推理")
+ self.device = "cpu"
+ self.is_half = False
+
+ if self.n_cpu == 0:
+ self.n_cpu = cpu_count()
+
+ if self.is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 60
+ x_max = 65
+ else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
+
+ if self.gpu_mem != None and self.gpu_mem <= 4:
+ x_pad = 1
+ x_query = 5
+ x_center = 30
+ x_max = 32
+
+ return x_pad, x_query, x_center, x_max
diff --git a/hubert_base.pt b/hubert_base.pt
new file mode 100644
index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff
--- /dev/null
+++ b/hubert_base.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
+size 189507909
diff --git a/lib/infer_pack/attentions.py b/lib/infer_pack/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..05501be1871643f78dddbeaa529c96667031a8db
--- /dev/null
+++ b/lib/infer_pack/attentions.py
@@ -0,0 +1,417 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from lib.infer_pack import commons
+from lib.infer_pack import modules
+from lib.infer_pack.modules import LayerNorm
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ window_size=10,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ window_size=window_size,
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ proximal_bias=proximal_bias,
+ proximal_init=proximal_init,
+ )
+ )
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ causal=True,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
+ device=x.device, dtype=x.dtype
+ )
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ p_dropout=0.0,
+ window_size=None,
+ heads_share=True,
+ block_length=None,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+ self.emb_rel_v = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert (
+ t_s == t_t
+ ), "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(
+ query / math.sqrt(self.k_channels), key_relative_embeddings
+ )
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(
+ device=scores.device, dtype=scores.dtype
+ )
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert (
+ t_s == t_t
+ ), "Local attention is only available for self-attention."
+ block_mask = (
+ torch.ones_like(scores)
+ .triu(-self.block_length)
+ .tril(self.block_length)
+ )
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(
+ self.emb_rel_v, t_s
+ )
+ output = output + self._matmul_with_relative_values(
+ relative_weights, value_relative_embeddings
+ )
+ output = (
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
+ )
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[
+ :, slice_start_position:slice_end_position
+ ]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
+ )
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
+ :, :, :length, length - 1 :
+ ]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
+ )
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=0.0,
+ activation=None,
+ causal=False,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/lib/infer_pack/commons.py b/lib/infer_pack/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215
--- /dev/null
+++ b/lib/infer_pack/commons.py
@@ -0,0 +1,166 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += (
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
+ )
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def slice_segments2(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
+ num_timescales - 1
+ )
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
+ )
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2, 3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1.0 / norm_type)
+ return total_norm
diff --git a/lib/infer_pack/models.py b/lib/infer_pack/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..44c08d361bcb13b84b38dc29beff5cdaddad4ea2
--- /dev/null
+++ b/lib/infer_pack/models.py
@@ -0,0 +1,1124 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/lib/infer_pack/models_onnx.py b/lib/infer_pack/models_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..963e67b29f828e9fdd096397952054fe77cf3d10
--- /dev/null
+++ b/lib/infer_pack/models_onnx.py
@@ -0,0 +1,819 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMsNSFsidM(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ version,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ if version == "v1":
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ else:
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ self.speaker_map = None
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def construct_spkmixmap(self, n_speaker):
+ self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
+ for i in range(n_speaker):
+ self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
+ self.speaker_map = self.speaker_map.unsqueeze(0)
+
+ def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
+ if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
+ g = g * self.speaker_map # [N, S, B, 1, H]
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
+ else:
+ g = g.unsqueeze(0)
+ g = self.emb_g(g).transpose(1, 2)
+
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/lib/infer_pack/modules.py b/lib/infer_pack/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..c83289df7c79a4810dacd15c050148544ba0b6a9
--- /dev/null
+++ b/lib/infer_pack/modules.py
@@ -0,0 +1,522 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from lib.infer_pack.transforms import piecewise_rational_quadratic_transform
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ hidden_channels,
+ out_channels,
+ kernel_size,
+ n_layers,
+ p_dropout,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(
+ nn.Conv1d(
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
+ for _ in range(n_layers - 1):
+ self.conv_layers.append(
+ nn.Conv1d(
+ hidden_channels,
+ hidden_channels,
+ kernel_size,
+ padding=kernel_size // 2,
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size**i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ groups=channels,
+ dilation=dilation,
+ padding=padding,
+ )
+ )
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ p_dropout=0,
+ ):
+ super(WN, self).__init__()
+ assert kernel_size % 2 == 1
+ self.hidden_channels = hidden_channels
+ self.kernel_size = (kernel_size,)
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(
+ gin_channels, 2 * hidden_channels * n_layers, 1
+ )
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
+
+ for i in range(n_layers):
+ dilation = dilation_rate**i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(
+ hidden_channels,
+ 2 * hidden_channels,
+ kernel_size,
+ dilation=dilation,
+ padding=padding,
+ )
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2]),
+ )
+ ),
+ ]
+ )
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ ]
+ )
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ ]
+ )
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels, 1))
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False,
+ ):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=p_dropout,
+ gin_channels=gin_channels,
+ )
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1, 2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class ConvFlow(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ filter_channels,
+ kernel_size,
+ n_layers,
+ num_bins=10,
+ tail_bound=5.0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.num_bins = num_bins
+ self.tail_bound = tail_bound
+ self.half_channels = in_channels // 2
+
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
+ self.proj = nn.Conv1d(
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
+ )
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0)
+ h = self.convs(h, x_mask, g=g)
+ h = self.proj(h) * x_mask
+
+ b, c, t = x0.shape
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
+
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
+ self.filter_channels
+ )
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
+
+ x1, logabsdet = piecewise_rational_quadratic_transform(
+ x1,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=reverse,
+ tails="linear",
+ tail_bound=self.tail_bound,
+ )
+
+ x = torch.cat([x0, x1], 1) * x_mask
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
+ if not reverse:
+ return x, logdet
+ else:
+ return x
diff --git a/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee3171bcb7c4a5066560723108b56e055f18be45
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
@@ -0,0 +1,90 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+
+class DioF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def resize_f0(self, x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
+ np.arange(0, len(source)),
+ source,
+ )
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/lib/infer_pack/modules/F0Predictor/F0Predictor.py b/lib/infer_pack/modules/F0Predictor/F0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..f56e49e7f0e6eab3babf0711cae2933371b9f9cc
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/F0Predictor.py
@@ -0,0 +1,16 @@
+class F0Predictor(object):
+ def compute_f0(self, wav, p_len):
+ """
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length]
+ """
+ pass
+
+ def compute_f0_uv(self, wav, p_len):
+ """
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
+ """
+ pass
diff --git a/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b412ba2814e114ca7bb00b6fd6ef217f63d788a3
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
@@ -0,0 +1,86 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+
+class HarvestF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def resize_f0(self, x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
+ np.arange(0, len(source)),
+ source,
+ )
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.hop_length,
+ f0_ceil=self.f0_max,
+ f0_floor=self.f0_min,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2c592527a5966e6f8e79e8c52dc5b414246dcc6
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
@@ -0,0 +1,97 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import parselmouth
+import numpy as np
+
+
+class PMF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def compute_f0(self, wav, p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = (
+ parselmouth.Sound(x, self.sampling_rate)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=self.f0_min,
+ pitch_ceiling=self.f0_max,
+ )
+ .selected_array["frequency"]
+ )
+
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
+ f0, uv = self.interpolate_f0(f0)
+ return f0
+
+ def compute_f0_uv(self, wav, p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = (
+ parselmouth.Sound(x, self.sampling_rate)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=self.f0_min,
+ pitch_ceiling=self.f0_max,
+ )
+ .selected_array["frequency"]
+ )
+
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
+ f0, uv = self.interpolate_f0(f0)
+ return f0, uv
diff --git a/lib/infer_pack/modules/F0Predictor/__init__.py b/lib/infer_pack/modules/F0Predictor/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lib/infer_pack/onnx_inference.py b/lib/infer_pack/onnx_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..c78324cbc08414fffcc689f325312de0e51bd6b4
--- /dev/null
+++ b/lib/infer_pack/onnx_inference.py
@@ -0,0 +1,143 @@
+import onnxruntime
+import librosa
+import numpy as np
+import soundfile
+
+
+class ContentVec:
+ def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
+ print("load model(s) from {}".format(vec_path))
+ if device == "cpu" or device is None:
+ providers = ["CPUExecutionProvider"]
+ elif device == "cuda":
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
+ elif device == "dml":
+ providers = ["DmlExecutionProvider"]
+ else:
+ raise RuntimeError("Unsportted Device")
+ self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
+
+ def __call__(self, wav):
+ return self.forward(wav)
+
+ def forward(self, wav):
+ feats = wav
+ if feats.ndim == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.ndim == 1, feats.ndim
+ feats = np.expand_dims(np.expand_dims(feats, 0), 0)
+ onnx_input = {self.model.get_inputs()[0].name: feats}
+ logits = self.model.run(None, onnx_input)[0]
+ return logits.transpose(0, 2, 1)
+
+
+def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
+ if f0_predictor == "pm":
+ from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
+
+ f0_predictor_object = PMF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ elif f0_predictor == "harvest":
+ from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
+
+ f0_predictor_object = HarvestF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ elif f0_predictor == "dio":
+ from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
+
+ f0_predictor_object = DioF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ else:
+ raise Exception("Unknown f0 predictor")
+ return f0_predictor_object
+
+
+class OnnxRVC:
+ def __init__(
+ self,
+ model_path,
+ sr=40000,
+ hop_size=512,
+ vec_path="vec-768-layer-12",
+ device="cpu",
+ ):
+ vec_path = f"pretrained/{vec_path}.onnx"
+ self.vec_model = ContentVec(vec_path, device)
+ if device == "cpu" or device is None:
+ providers = ["CPUExecutionProvider"]
+ elif device == "cuda":
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
+ elif device == "dml":
+ providers = ["DmlExecutionProvider"]
+ else:
+ raise RuntimeError("Unsportted Device")
+ self.model = onnxruntime.InferenceSession(model_path, providers=providers)
+ self.sampling_rate = sr
+ self.hop_size = hop_size
+
+ def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
+ onnx_input = {
+ self.model.get_inputs()[0].name: hubert,
+ self.model.get_inputs()[1].name: hubert_length,
+ self.model.get_inputs()[2].name: pitch,
+ self.model.get_inputs()[3].name: pitchf,
+ self.model.get_inputs()[4].name: ds,
+ self.model.get_inputs()[5].name: rnd,
+ }
+ return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
+
+ def inference(
+ self,
+ raw_path,
+ sid,
+ f0_method="dio",
+ f0_up_key=0,
+ pad_time=0.5,
+ cr_threshold=0.02,
+ ):
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ f0_predictor = get_f0_predictor(
+ f0_method,
+ hop_length=self.hop_size,
+ sampling_rate=self.sampling_rate,
+ threshold=cr_threshold,
+ )
+ wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
+ org_length = len(wav)
+ if org_length / sr > 50.0:
+ raise RuntimeError("Reached Max Length")
+
+ wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
+ wav16k = wav16k
+
+ hubert = self.vec_model(wav16k)
+ hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
+ hubert_length = hubert.shape[1]
+
+ pitchf = f0_predictor.compute_f0(wav, hubert_length)
+ pitchf = pitchf * 2 ** (f0_up_key / 12)
+ pitch = pitchf.copy()
+ f0_mel = 1127 * np.log(1 + pitch / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ pitch = np.rint(f0_mel).astype(np.int64)
+
+ pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
+ pitch = pitch.reshape(1, len(pitch))
+ ds = np.array([sid]).astype(np.int64)
+
+ rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
+ hubert_length = np.array([hubert_length]).astype(np.int64)
+
+ out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
+ out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
+ return out_wav[0:org_length]
diff --git a/lib/infer_pack/transforms.py b/lib/infer_pack/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47
--- /dev/null
+++ b/lib/infer_pack/transforms.py
@@ -0,0 +1,209 @@
+import torch
+from torch.nn import functional as F
+
+import numpy as np
+
+
+DEFAULT_MIN_BIN_WIDTH = 1e-3
+DEFAULT_MIN_BIN_HEIGHT = 1e-3
+DEFAULT_MIN_DERIVATIVE = 1e-3
+
+
+def piecewise_rational_quadratic_transform(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails=None,
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if tails is None:
+ spline_fn = rational_quadratic_spline
+ spline_kwargs = {}
+ else:
+ spline_fn = unconstrained_rational_quadratic_spline
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
+
+ outputs, logabsdet = spline_fn(
+ inputs=inputs,
+ unnormalized_widths=unnormalized_widths,
+ unnormalized_heights=unnormalized_heights,
+ unnormalized_derivatives=unnormalized_derivatives,
+ inverse=inverse,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ **spline_kwargs
+ )
+ return outputs, logabsdet
+
+
+def searchsorted(bin_locations, inputs, eps=1e-6):
+ bin_locations[..., -1] += eps
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
+
+
+def unconstrained_rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails="linear",
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
+ outside_interval_mask = ~inside_interval_mask
+
+ outputs = torch.zeros_like(inputs)
+ logabsdet = torch.zeros_like(inputs)
+
+ if tails == "linear":
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
+ constant = np.log(np.exp(1 - min_derivative) - 1)
+ unnormalized_derivatives[..., 0] = constant
+ unnormalized_derivatives[..., -1] = constant
+
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
+ logabsdet[outside_interval_mask] = 0
+ else:
+ raise RuntimeError("{} tails are not implemented.".format(tails))
+
+ (
+ outputs[inside_interval_mask],
+ logabsdet[inside_interval_mask],
+ ) = rational_quadratic_spline(
+ inputs=inputs[inside_interval_mask],
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
+ inverse=inverse,
+ left=-tail_bound,
+ right=tail_bound,
+ bottom=-tail_bound,
+ top=tail_bound,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ )
+
+ return outputs, logabsdet
+
+
+def rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ left=0.0,
+ right=1.0,
+ bottom=0.0,
+ top=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if torch.min(inputs) < left or torch.max(inputs) > right:
+ raise ValueError("Input to a transform is not within its domain")
+
+ num_bins = unnormalized_widths.shape[-1]
+
+ if min_bin_width * num_bins > 1.0:
+ raise ValueError("Minimal bin width too large for the number of bins")
+ if min_bin_height * num_bins > 1.0:
+ raise ValueError("Minimal bin height too large for the number of bins")
+
+ widths = F.softmax(unnormalized_widths, dim=-1)
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
+ cumwidths = torch.cumsum(widths, dim=-1)
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
+ cumwidths = (right - left) * cumwidths + left
+ cumwidths[..., 0] = left
+ cumwidths[..., -1] = right
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
+
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
+
+ heights = F.softmax(unnormalized_heights, dim=-1)
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
+ cumheights = torch.cumsum(heights, dim=-1)
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
+ cumheights = (top - bottom) * cumheights + bottom
+ cumheights[..., 0] = bottom
+ cumheights[..., -1] = top
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
+
+ if inverse:
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
+ else:
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
+
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
+
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
+ delta = heights / widths
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
+
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
+
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
+
+ if inverse:
+ a = (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ ) + input_heights * (input_delta - input_derivatives)
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ )
+ c = -input_delta * (inputs - input_cumheights)
+
+ discriminant = b.pow(2) - 4 * a * c
+ assert (discriminant >= 0).all()
+
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
+ outputs = root * input_bin_widths + input_cumwidths
+
+ theta_one_minus_theta = root * (1 - root)
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * root.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - root).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, -logabsdet
+ else:
+ theta = (inputs - input_cumwidths) / input_bin_widths
+ theta_one_minus_theta = theta * (1 - theta)
+
+ numerator = input_heights * (
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
+ )
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ outputs = input_cumheights + numerator / denominator
+
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * theta.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - theta).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, logabsdet
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..404607f401bd6ad8755974aba112c9d4bba51222
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,21 @@
+wheel
+setuptools
+ffmpeg
+numba==0.56.4
+numpy==1.23.5
+scipy==1.9.3
+librosa==0.9.1
+fairseq==0.12.2
+faiss-cpu==1.7.3
+gradio==3.34.0
+pyworld>=0.3.2
+soundfile>=0.12.1
+praat-parselmouth>=0.4.2
+httpx==0.23.0
+tensorboard
+tensorboardX
+torchcrepe
+onnxruntime
+demucs
+edge-tts
+yt_dlp
diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..c6be666c8d980fc6da24bd5e16ac9909d9204a46
--- /dev/null
+++ b/vc_infer_pipeline.py
@@ -0,0 +1,431 @@
+import numpy as np, parselmouth, torch, pdb
+from time import time as ttime
+import torch.nn.functional as F
+import scipy.signal as signal
+import pyworld, os, traceback, faiss, librosa, torchcrepe
+from scipy import signal
+from functools import lru_cache
+
+bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
+
+input_audio_path2wav = {}
+
+
+@lru_cache
+def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
+ audio = input_audio_path2wav[input_audio_path]
+ f0, t = pyworld.harvest(
+ audio,
+ fs=fs,
+ f0_ceil=f0max,
+ f0_floor=f0min,
+ frame_period=frame_period,
+ )
+ f0 = pyworld.stonemask(audio, f0, t, fs)
+ return f0
+
+
+def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
+ # print(data1.max(),data2.max())
+ rms1 = librosa.feature.rms(
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
+ ) # 每半秒一个点
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
+ rms1 = torch.from_numpy(rms1)
+ rms1 = F.interpolate(
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.from_numpy(rms2)
+ rms2 = F.interpolate(
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
+ data2 *= (
+ torch.pow(rms1, torch.tensor(1 - rate))
+ * torch.pow(rms2, torch.tensor(rate - 1))
+ ).numpy()
+ return data2
+
+
+class VC(object):
+ def __init__(self, tgt_sr, config):
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
+ config.x_pad,
+ config.x_query,
+ config.x_center,
+ config.x_max,
+ config.is_half,
+ )
+ self.sr = 16000 # hubert输入采样率
+ self.window = 160 # 每帧点数
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
+ self.t_pad_tgt = tgt_sr * self.x_pad
+ self.t_pad2 = self.t_pad * 2
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
+ self.t_center = self.sr * self.x_center # 查询切点位置
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
+ self.device = config.device
+
+ def get_f0(
+ self,
+ input_audio_path,
+ x,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0=None,
+ ):
+ global input_audio_path2wav
+ time_step = self.window / self.sr * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ if f0_method == "pm":
+ f0 = (
+ parselmouth.Sound(x, self.sr)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=f0_min,
+ pitch_ceiling=f0_max,
+ )
+ .selected_array["frequency"]
+ )
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
+ )
+ elif f0_method == "harvest":
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
+ if filter_radius > 2:
+ f0 = signal.medfilt(f0, 3)
+ elif f0_method == "crepe":
+ model = "full"
+ # Pick a batch size that doesn't cause memory errors on your gpu
+ batch_size = 512
+ # Compute pitch using first gpu
+ audio = torch.tensor(np.copy(x))[None].float()
+ f0, pd = torchcrepe.predict(
+ audio,
+ self.sr,
+ self.window,
+ f0_min,
+ f0_max,
+ model,
+ batch_size=batch_size,
+ device=self.device,
+ return_periodicity=True,
+ )
+ pd = torchcrepe.filter.median(pd, 3)
+ f0 = torchcrepe.filter.mean(f0, 3)
+ f0[pd < 0.1] = 0
+ f0 = f0[0].cpu().numpy()
+ f0 *= pow(2, f0_up_key / 12)
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ tf0 = self.sr // self.window # 每秒f0点数
+ if inp_f0 is not None:
+ delta_t = np.round(
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
+ ).astype("int16")
+ replace_f0 = np.interp(
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
+ )
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
+ :shape
+ ]
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ f0bak = f0.copy()
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0bak # 1-0
+
+ def vc(
+ self,
+ model,
+ net_g,
+ sid,
+ audio0,
+ pitch,
+ pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ ): # ,file_index,file_big_npy
+ feats = torch.from_numpy(audio0)
+ if self.is_half:
+ feats = feats.half()
+ else:
+ feats = feats.float()
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
+
+ inputs = {
+ "source": feats.to(self.device),
+ "padding_mask": padding_mask,
+ "output_layer": 9 if version == "v1" else 12,
+ }
+ t0 = ttime()
+ with torch.no_grad():
+ logits = model.extract_features(**inputs)
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = feats.clone()
+ if (
+ isinstance(index, type(None)) == False
+ and isinstance(big_npy, type(None)) == False
+ and index_rate != 0
+ ):
+ npy = feats[0].cpu().numpy()
+ if self.is_half:
+ npy = npy.astype("float32")
+
+ # _, I = index.search(npy, 1)
+ # npy = big_npy[I.squeeze()]
+
+ score, ix = index.search(npy, k=8)
+ weight = np.square(1 / score)
+ weight /= weight.sum(axis=1, keepdims=True)
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
+
+ if self.is_half:
+ npy = npy.astype("float16")
+ feats = (
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ + (1 - index_rate) * feats
+ )
+
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
+ 0, 2, 1
+ )
+ t1 = ttime()
+ p_len = audio0.shape[0] // self.window
+ if feats.shape[1] < p_len:
+ p_len = feats.shape[1]
+ if pitch != None and pitchf != None:
+ pitch = pitch[:, :p_len]
+ pitchf = pitchf[:, :p_len]
+
+ if protect < 0.5 and pitch != None and pitchf != None:
+ pitchff = pitchf.clone()
+ pitchff[pitchf > 0] = 1
+ pitchff[pitchf < 1] = protect
+ pitchff = pitchff.unsqueeze(-1)
+ feats = feats * pitchff + feats0 * (1 - pitchff)
+ feats = feats.to(feats0.dtype)
+ p_len = torch.tensor([p_len], device=self.device).long()
+ with torch.no_grad():
+ if pitch != None and pitchf != None:
+ audio1 = (
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
+ .data.cpu()
+ .float()
+ .numpy()
+ )
+ else:
+ audio1 = (
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
+ )
+ del feats, p_len, padding_mask
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ t2 = ttime()
+ times[0] += t1 - t0
+ times[2] += t2 - t1
+ return audio1
+
+ def pipeline(
+ self,
+ model,
+ net_g,
+ sid,
+ audio,
+ input_audio_path,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ ):
+ if (
+ file_index != ""
+ # and file_big_npy != ""
+ # and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ # big_npy = np.load(file_big_npy)
+ big_npy = index.reconstruct_n(0, index.ntotal)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ audio = signal.filtfilt(bh, ah, audio)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i : i - self.window]
+ for t in range(self.t_center, audio.shape[0], self.t_center):
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
+ )[0][0]
+ )
+ s = 0
+ audio_opt = []
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+ pitch, pitchf = None, None
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(
+ input_audio_path,
+ audio_pad,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0,
+ )
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ if self.device == "mps":
+ pitchf = pitchf.astype(np.float32)
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+ t2 = ttime()
+ times[1] += t2 - t1
+ for t in opt_ts:
+ t = t // self.window * self.window
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ s = t
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window :] if t is not None else pitch,
+ pitchf[:, t // self.window :] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ audio_opt = np.concatenate(audio_opt)
+ if rms_mix_rate != 1:
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
+ audio_opt = librosa.resample(
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
+ )
+ audio_max = np.abs(audio_opt).max() / 0.99
+ max_int16 = 32768
+ if audio_max > 1:
+ max_int16 /= audio_max
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt
diff --git a/weights/arknights/goldenglow/added_IVF299_Flat_nprobe_1_goldenglow_v1.index b/weights/arknights/goldenglow/added_IVF299_Flat_nprobe_1_goldenglow_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..652b6615037c449f4142c5c79d0dc65e32b5d35e
--- /dev/null
+++ b/weights/arknights/goldenglow/added_IVF299_Flat_nprobe_1_goldenglow_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:19a1e85cb1cdaaec49d27cb2034532fd9dee322b9659c5d475e68aeeb48ba1c8
+size 12343891
diff --git a/weights/arknights/goldenglow/cover.png b/weights/arknights/goldenglow/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..13cbdd8233efcfd6f12f7f28595ffcaa70b863f3
--- /dev/null
+++ b/weights/arknights/goldenglow/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fdd5ef16054bf3086019c381ee24a7ef60b7480d6141a1fcf89332807c5fa9c2
+size 1392319
diff --git a/weights/arknights/goldenglow/goldenglow.pth b/weights/arknights/goldenglow/goldenglow.pth
new file mode 100644
index 0000000000000000000000000000000000000000..8e20181108899d078309d20fdedc639976f99e33
--- /dev/null
+++ b/weights/arknights/goldenglow/goldenglow.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9424ab75bc5c3708c787ea15ed4dc92b4eaf3fc504fc00d01f17e9f7f748495a
+size 55028048
diff --git a/weights/arknights/merc-w/added_IVF379_Flat_nprobe_1_merc-w_v1.index b/weights/arknights/merc-w/added_IVF379_Flat_nprobe_1_merc-w_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..feefee4c6e157d81be52c87b14eb983e4b6b3db7
--- /dev/null
+++ b/weights/arknights/merc-w/added_IVF379_Flat_nprobe_1_merc-w_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4a732156726247f25cf7241ab6fb7a80a3f6c717ec3fde910d764c9d86b65d21
+size 15682411
diff --git a/weights/arknights/merc-w/cover.png b/weights/arknights/merc-w/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..0b88f9abcc6baab00261db59bb75857349f27211
Binary files /dev/null and b/weights/arknights/merc-w/cover.png differ
diff --git a/weights/arknights/merc-w/merc-w.pth b/weights/arknights/merc-w/merc-w.pth
new file mode 100644
index 0000000000000000000000000000000000000000..103bf53a78f180ec306719f48aabeff0c51067d3
--- /dev/null
+++ b/weights/arknights/merc-w/merc-w.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b8a624ded593f79add43565ed9729e2131850a74493b078844372e38fcbf6287
+size 55019812
diff --git a/weights/arknights/model_info.json b/weights/arknights/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..bdb733172e105f20294922f034e1cbd3e3fbf874
--- /dev/null
+++ b/weights/arknights/model_info.json
@@ -0,0 +1,18 @@
+{
+ "goldenglow": {
+ "enable": true,
+ "model_path": "goldenglow.pth",
+ "title": "Arknights - Goldenglow",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF299_Flat_nprobe_1_goldenglow_v1.index",
+ "author": "TheAster"
+ },
+ "merc-w": {
+ "enable": true,
+ "model_path": "merc-w.pth",
+ "title": "Arknights - W",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF379_Flat_nprobe_1_merc-w_v1.index",
+ "author": "TheAster"
+ }
+}
\ No newline at end of file
diff --git a/weights/azur-lane/model_info.json b/weights/azur-lane/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..96d85241636e7e845ff745c8ade20cf6b0748fb7
--- /dev/null
+++ b/weights/azur-lane/model_info.json
@@ -0,0 +1,10 @@
+{
+ "taihou": {
+ "enable": true,
+ "model_path": "taihou.pth",
+ "title": "Azur Lane - IJN Taihou",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF993_Flat_nprobe_1_taihou_v1.index",
+ "author": "RRRea"
+ }
+}
\ No newline at end of file
diff --git a/weights/azur-lane/taihou/added_IVF993_Flat_nprobe_1_taihou_v1.index b/weights/azur-lane/taihou/added_IVF993_Flat_nprobe_1_taihou_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..e7029b764b694ae15b613e126fdd3ec84451057a
--- /dev/null
+++ b/weights/azur-lane/taihou/added_IVF993_Flat_nprobe_1_taihou_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:10c1b514a370a1ea7ed716fe60e642464a0166e1e313f917b81e91b55ab2eb44
+size 40992211
diff --git a/weights/azur-lane/taihou/cover.png b/weights/azur-lane/taihou/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..309d43b8ec7d67205c90428a0df6a6c35039c431
--- /dev/null
+++ b/weights/azur-lane/taihou/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:16aea0e13dca8125ffec1b69cc01767ae0120d20a8d105858b392afe59001976
+size 1005905
diff --git a/weights/azur-lane/taihou/taihou.pth b/weights/azur-lane/taihou/taihou.pth
new file mode 100644
index 0000000000000000000000000000000000000000..45afcac6942f138ac884a763b67d56c5dc705929
--- /dev/null
+++ b/weights/azur-lane/taihou/taihou.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5834f6a5fd026fb206dc11e8c2d6dbe331c93864d2e4903c29d8f4745a2ef594
+size 55019812
diff --git a/weights/blue-archive/aru/added_IVF825_Flat_nprobe_1_aru_v1.index b/weights/blue-archive/aru/added_IVF825_Flat_nprobe_1_aru_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..54b1c77d1da5114ef0cef4a43cd7398037147460
--- /dev/null
+++ b/weights/blue-archive/aru/added_IVF825_Flat_nprobe_1_aru_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b106f3c3d3765d9aafa9b09c3748f8531b58d64d3b7e8ade3c285238f962ed8a
+size 34079875
diff --git a/weights/blue-archive/aru/aru.pth b/weights/blue-archive/aru/aru.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9fff27040fb349bd10b5b7b6af7fd4fc4bccdd50
--- /dev/null
+++ b/weights/blue-archive/aru/aru.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e3452b38748da9d0b380c02f8c35389322a53e822a5db9e976c45969058b03a8
+size 54995587
diff --git a/weights/blue-archive/aru/cover.png b/weights/blue-archive/aru/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..aa62ca4831184222e0688a91e493106adc18fc53
Binary files /dev/null and b/weights/blue-archive/aru/cover.png differ
diff --git a/weights/blue-archive/asuna/added_IVF807_Flat_nprobe_1_asuna_v1.index b/weights/blue-archive/asuna/added_IVF807_Flat_nprobe_1_asuna_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..ad1ef1dd499e9a22e6160e8e0df84ffa2dfebd42
--- /dev/null
+++ b/weights/blue-archive/asuna/added_IVF807_Flat_nprobe_1_asuna_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6a5e33e5c0c39dafe1f7c10554620607e6fcb734762aa296ac76696cca2ef4d1
+size 33330643
diff --git a/weights/blue-archive/asuna/asuna.pth b/weights/blue-archive/asuna/asuna.pth
new file mode 100644
index 0000000000000000000000000000000000000000..abc089b69df24962d162a130244e3282d6882b7d
--- /dev/null
+++ b/weights/blue-archive/asuna/asuna.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:74de646069b8a2191f1ff362b06956d4df5ccd082daef38deb64c33825448fe8
+size 54996633
diff --git a/weights/blue-archive/asuna/cover.png b/weights/blue-archive/asuna/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..cf72df8a69050c6a7085e567a5d945e67f94aee6
Binary files /dev/null and b/weights/blue-archive/asuna/cover.png differ
diff --git a/weights/blue-archive/azusa/added_IVF629_Flat_nprobe_1_azusa_v2.index b/weights/blue-archive/azusa/added_IVF629_Flat_nprobe_1_azusa_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..a7e6df6d3d2ad76e371c1f6c35bce9f61cbda839
--- /dev/null
+++ b/weights/blue-archive/azusa/added_IVF629_Flat_nprobe_1_azusa_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5819f9067eea78e884ce76bdf63ee8ef8b6fa6e295bc850e3c20a0ea42ad99d6
+size 77560699
diff --git a/weights/blue-archive/azusa/azusa.pth b/weights/blue-archive/azusa/azusa.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1f810efcfcfd33cfb6b598bdec7534c771915d49
--- /dev/null
+++ b/weights/blue-archive/azusa/azusa.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:69ed571d76e8c5c61862751b6b48d59d7d1b6848330cd2a84f6ca4ea11afc8be
+size 55193241
diff --git a/weights/blue-archive/azusa/cover.png b/weights/blue-archive/azusa/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..29795e1d907d516282f185dc2a83f942696c5176
Binary files /dev/null and b/weights/blue-archive/azusa/cover.png differ
diff --git a/weights/blue-archive/hina/added_IVF739_Flat_nprobe_1_hina_v1.index b/weights/blue-archive/hina/added_IVF739_Flat_nprobe_1_hina_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..dd588e8c664dc639e2af2203c2b5bd5ba75750a9
--- /dev/null
+++ b/weights/blue-archive/hina/added_IVF739_Flat_nprobe_1_hina_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ed10d3ceb9bcc17613a01de3c803ec9ad0a8dba869094195537073ccd355955d
+size 30523603
diff --git a/weights/blue-archive/hina/cover.png b/weights/blue-archive/hina/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..ecf835edea709d6de8ab39518da433918ae3e54a
Binary files /dev/null and b/weights/blue-archive/hina/cover.png differ
diff --git a/weights/blue-archive/hina/hina.pth b/weights/blue-archive/hina/hina.pth
new file mode 100644
index 0000000000000000000000000000000000000000..705b2cfadd1fcbd48437029b152c0416e877b861
--- /dev/null
+++ b/weights/blue-archive/hina/hina.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5cb619cc1c1b3f3a176c49e63aa713d9f58813f3e28ca005ad82999b26aecc71
+size 54996174
diff --git a/weights/blue-archive/kazusa/added_IVF441_Flat_nprobe_1_kazusa_v1.index b/weights/blue-archive/kazusa/added_IVF441_Flat_nprobe_1_kazusa_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..82849fed2213986f65bafbe663975e6f782ac0c7
--- /dev/null
+++ b/weights/blue-archive/kazusa/added_IVF441_Flat_nprobe_1_kazusa_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6d39df26302efcff530356ecd506cfcb20c5ef4ab9e827a282ecc5d7a9cf0e07
+size 18235579
diff --git a/weights/blue-archive/kazusa/cover.png b/weights/blue-archive/kazusa/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..b64a306974d74c526aa21af9bfd3b7f4e2cdee00
Binary files /dev/null and b/weights/blue-archive/kazusa/cover.png differ
diff --git a/weights/blue-archive/kazusa/kazusa.pth b/weights/blue-archive/kazusa/kazusa.pth
new file mode 100644
index 0000000000000000000000000000000000000000..4deb4ccf09ebfa594bd9e1d62527dc09eca19893
--- /dev/null
+++ b/weights/blue-archive/kazusa/kazusa.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:895a32aceb3347fc9db01448b87fcdad72e852a9cdd3ed056d282a7f9eb93423
+size 55019812
diff --git a/weights/blue-archive/koyuki/added_IVF424_Flat_nprobe_1_koyuki_v1.index b/weights/blue-archive/koyuki/added_IVF424_Flat_nprobe_1_koyuki_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..d28e12f4f5a9b451314d6f5cf6025c722e9ea260
--- /dev/null
+++ b/weights/blue-archive/koyuki/added_IVF424_Flat_nprobe_1_koyuki_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f9ec2224230550be65e6e0fb284260fde960048699359de668f4e952e4bff1a9
+size 17518339
diff --git a/weights/blue-archive/koyuki/cover.png b/weights/blue-archive/koyuki/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..a59158107fe0b0a2ad7b9c79010c1729f040f1a2
Binary files /dev/null and b/weights/blue-archive/koyuki/cover.png differ
diff --git a/weights/blue-archive/koyuki/koyuki.pth b/weights/blue-archive/koyuki/koyuki.pth
new file mode 100644
index 0000000000000000000000000000000000000000..79745081582d6b960e8873be2720c5dcb5c81f11
--- /dev/null
+++ b/weights/blue-archive/koyuki/koyuki.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:46bc548aae473f09cdfc1fd78fabc3fdb43b46297cc82ce35d0146ae8c8b0e60
+size 55019812
diff --git a/weights/blue-archive/midori/added_IVF341_Flat_nprobe_1_midori_v1.index b/weights/blue-archive/midori/added_IVF341_Flat_nprobe_1_midori_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..12cec4c641521bfe2475659085bcf1a76948dfc9
--- /dev/null
+++ b/weights/blue-archive/midori/added_IVF341_Flat_nprobe_1_midori_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c56e900dcd7c1b0faf1c9e7345a1f4fc0f407790c7658cb69ba63239f71eac38
+size 14094163
diff --git a/weights/blue-archive/midori/cover.png b/weights/blue-archive/midori/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..0ebc709094eb54da7477e2041c55d5a1e529fd84
Binary files /dev/null and b/weights/blue-archive/midori/cover.png differ
diff --git a/weights/blue-archive/midori/midori.pth b/weights/blue-archive/midori/midori.pth
new file mode 100644
index 0000000000000000000000000000000000000000..022610166f3aa76375b294a465adead6d8b0bb2f
--- /dev/null
+++ b/weights/blue-archive/midori/midori.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:496783e032865d841363ddbb00b14bc3ef9dbe272049a68d4c74d8cde0b2f05f
+size 55019812
diff --git a/weights/blue-archive/mika/added_IVF406_Flat_nprobe_1_mika_v1.index b/weights/blue-archive/mika/added_IVF406_Flat_nprobe_1_mika_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..150cd0d63d8db2cd529d305cf2772823ea5b56cb
--- /dev/null
+++ b/weights/blue-archive/mika/added_IVF406_Flat_nprobe_1_mika_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ecf612f25dfae0ac7cf3d85c5560ca58687a4f6f9ce93ab2b8062016538abb1b
+size 16773235
diff --git a/weights/blue-archive/mika/cover.png b/weights/blue-archive/mika/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..c2036b2d644e0835638d21749b6064d058c12f91
Binary files /dev/null and b/weights/blue-archive/mika/cover.png differ
diff --git a/weights/blue-archive/mika/mika.pth b/weights/blue-archive/mika/mika.pth
new file mode 100644
index 0000000000000000000000000000000000000000..7109d3aafd76fc19c67206cd68a1644eeb735a0b
--- /dev/null
+++ b/weights/blue-archive/mika/mika.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9f41728d756b6eb137076b0f8556ba40f4bad8fb9ce5439351e55466c2c242a9
+size 54996174
diff --git a/weights/blue-archive/model_info.json b/weights/blue-archive/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..a3e4e9d9da6bb10b99e935742f3c469c0483584e
--- /dev/null
+++ b/weights/blue-archive/model_info.json
@@ -0,0 +1,106 @@
+{
+ "aru": {
+ "enable": true,
+ "model_path": "aru.pth",
+ "title": "Blue Archive - Rikuhachima Aru",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF825_Flat_nprobe_1_aru_v1.index",
+ "author": "RogzDA"
+ },
+ "asuna": {
+ "enable": true,
+ "model_path": "asuna.pth",
+ "title": "Blue Archive - Ichinose Asuna",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF807_Flat_nprobe_1_asuna_v1.index",
+ "author": "RRRea"
+ },
+ "azusa": {
+ "enable": true,
+ "model_path": "azusa.pth",
+ "title": "Blue Archive - Shirasu Azusa",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF629_Flat_nprobe_1_azusa_v2.index",
+ "author": "RRRea"
+ },
+ "hina": {
+ "enable": true,
+ "model_path": "hina.pth",
+ "title": "Blue Archive - Sorasaki Hina",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF739_Flat_nprobe_1_hina_v1.index",
+ "author": "RogzDA"
+ },
+ "kazusa": {
+ "enable": true,
+ "model_path": "kazusa.pth",
+ "title": "Blue Archive - Kyouyama Kazusa",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF441_Flat_nprobe_1_kazusa_v1.index",
+ "author": "RogzDA"
+ },
+ "koyuki": {
+ "enable": true,
+ "model_path": "koyuki.pth",
+ "title": "Blue Archive - Korosaki Koyuki",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF424_Flat_nprobe_1_koyuki_v1.index",
+ "author": "RogzDA"
+ },
+ "midori": {
+ "enable": true,
+ "model_path": "midori.pth",
+ "title": "Blue Archive - Saiba Midori",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF341_Flat_nprobe_1_midori_v1.index",
+ "author": "RogzDA"
+ },
+ "mika": {
+ "enable": true,
+ "model_path": "mika.pth",
+ "title": "Blue Archive - Misono Mika",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF406_Flat_nprobe_1_mika_v1.index",
+ "author": "RRRea"
+ },
+ "momoi": {
+ "enable": true,
+ "model_path": "momoi.pth",
+ "title": "Blue Archive - Saiba Momoi",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF376_Flat_nprobe_1_momoi_v1.index",
+ "author": "RogzDA"
+ },
+ "noa": {
+ "enable": true,
+ "model_path": "noa.pth",
+ "title": "Blue Archive - Ushio Noa",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF610_Flat_nprobe_1_noa_v1.index",
+ "author": "RRRea"
+ },
+ "saki": {
+ "enable": true,
+ "model_path": "saki.pth",
+ "title": "Blue Archive - Sorai Saki",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF761_Flat_nprobe_1_saki_v1.index",
+ "author": "RRRea"
+ },
+ "toki": {
+ "enable": true,
+ "model_path": "toki.pth",
+ "title": "Blue Archive - Asuma Toki",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF757_Flat_nprobe_1_toki_v1.index",
+ "author": "RRRea"
+ },
+ "yuuka": {
+ "enable": true,
+ "model_path": "yuuka.pth",
+ "title": "Blue Archive - Hayase Yuuka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF809_Flat_nprobe_1_yuuka_v1.index",
+ "author": "RRRea"
+ }
+}
\ No newline at end of file
diff --git a/weights/blue-archive/momoi/added_IVF376_Flat_nprobe_1_momoi_v1.index b/weights/blue-archive/momoi/added_IVF376_Flat_nprobe_1_momoi_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..b77e249a1e3d123d3496c3384fac39b4ee2b195f
--- /dev/null
+++ b/weights/blue-archive/momoi/added_IVF376_Flat_nprobe_1_momoi_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0c3b3396ee19c88d4846054599173c116be8ec4877dd30a0fba0bb55bd529a1f
+size 15545155
diff --git a/weights/blue-archive/momoi/cover.png b/weights/blue-archive/momoi/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..7ba5d34866b0e402e2804bb91dbdae90e5829ec5
Binary files /dev/null and b/weights/blue-archive/momoi/cover.png differ
diff --git a/weights/blue-archive/momoi/momoi.pth b/weights/blue-archive/momoi/momoi.pth
new file mode 100644
index 0000000000000000000000000000000000000000..f9607a0c0fc84ba14e0fcd62ab0c46482ae1e801
--- /dev/null
+++ b/weights/blue-archive/momoi/momoi.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e8693987ae40ee8e44b96e15b0e5d8369c6829dbfd3b89c1ba875dfc105d5cbd
+size 54996633
diff --git a/weights/blue-archive/noa/added_IVF610_Flat_nprobe_1_noa_v1.index b/weights/blue-archive/noa/added_IVF610_Flat_nprobe_1_noa_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..24da73ee98e9eca2cb6f973576aa2db4119c8bde
--- /dev/null
+++ b/weights/blue-archive/noa/added_IVF610_Flat_nprobe_1_noa_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4a0e8cd47c5579d04010ec1d02d14e4d430bbb08ae376ad8c786375da542ccc
+size 25200547
diff --git a/weights/blue-archive/noa/cover.png b/weights/blue-archive/noa/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..da6e66b1f8094a0122e986b3c679ea1307e6c457
Binary files /dev/null and b/weights/blue-archive/noa/cover.png differ
diff --git a/weights/blue-archive/noa/noa.pth b/weights/blue-archive/noa/noa.pth
new file mode 100644
index 0000000000000000000000000000000000000000..e86fd36239da3818d849ea140c620c4cbdbcdc4d
--- /dev/null
+++ b/weights/blue-archive/noa/noa.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:78f34bac41e5024872372104c665e4fd098d6632159c232d7cdc9a1af0ad2c53
+size 54995587
diff --git a/weights/blue-archive/saki/added_IVF761_Flat_nprobe_1_saki_v1.index b/weights/blue-archive/saki/added_IVF761_Flat_nprobe_1_saki_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..168ecd1621cb552551fe4a47ef0d89b26643ff7f
--- /dev/null
+++ b/weights/blue-archive/saki/added_IVF761_Flat_nprobe_1_saki_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c14ad3a4aa9dbf5d65e5d70549c8f5030e7c8d80049a10a94f8380d0d8ddcc26
+size 31430731
diff --git a/weights/blue-archive/saki/cover.png b/weights/blue-archive/saki/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..527435f91bbee65cfd4970ea2f4fbdd46a3e6fdb
Binary files /dev/null and b/weights/blue-archive/saki/cover.png differ
diff --git a/weights/blue-archive/saki/saki.pth b/weights/blue-archive/saki/saki.pth
new file mode 100644
index 0000000000000000000000000000000000000000..fc3eb5a1867690918fd8d124b387983d237a4ea0
--- /dev/null
+++ b/weights/blue-archive/saki/saki.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c0944cc157e40877b02299f58cde8044fe94761951f3729f7144518d269cd41f
+size 54996174
diff --git a/weights/blue-archive/toki/added_IVF757_Flat_nprobe_1_toki_v1.index b/weights/blue-archive/toki/added_IVF757_Flat_nprobe_1_toki_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..9a06ab29d693ddbbfb892a289ca5f347aba6d7c0
--- /dev/null
+++ b/weights/blue-archive/toki/added_IVF757_Flat_nprobe_1_toki_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cbefe3d635b97cf73cf7b28b44c3a36bba1359162099d3f9d6680cbf2cd05265
+size 31276963
diff --git a/weights/blue-archive/toki/cover.png b/weights/blue-archive/toki/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..dca0386e64991a30b3698a2c1d28b2223541d512
--- /dev/null
+++ b/weights/blue-archive/toki/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:85c61c9167792e856ed09e428d0611d9265c1dcf7c42eb98b63f11f07727da22
+size 1242566
diff --git a/weights/blue-archive/toki/toki.pth b/weights/blue-archive/toki/toki.pth
new file mode 100644
index 0000000000000000000000000000000000000000..b755e474b007bf85610c1939c64692d631e9d744
--- /dev/null
+++ b/weights/blue-archive/toki/toki.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75d3f5c7bc3eecc6470e2f20d13e13f8a55d54ebf495ae81107a6fe4dccf7528
+size 54996174
diff --git a/weights/blue-archive/yuuka/added_IVF809_Flat_nprobe_1_yuuka_v1.index b/weights/blue-archive/yuuka/added_IVF809_Flat_nprobe_1_yuuka_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..aa11226b386d633c425fa3d70df653951aa06322
--- /dev/null
+++ b/weights/blue-archive/yuuka/added_IVF809_Flat_nprobe_1_yuuka_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:23b1711c88253a5377d1b38a904a71a4c0235c8b652b80c5a762f0c36a741b90
+size 33412171
diff --git a/weights/blue-archive/yuuka/cover.png b/weights/blue-archive/yuuka/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..3e3606a4c1ade5c24796d2f2def3125f03559b8f
Binary files /dev/null and b/weights/blue-archive/yuuka/cover.png differ
diff --git a/weights/blue-archive/yuuka/yuuka.pth b/weights/blue-archive/yuuka/yuuka.pth
new file mode 100644
index 0000000000000000000000000000000000000000..bfa3457527b2374a26e112cc68d4ca79be345a95
--- /dev/null
+++ b/weights/blue-archive/yuuka/yuuka.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:260ac43662037919bb3a844b5e2ff41a2d0486c3f42012549844fa8447c9e279
+size 54996633
diff --git a/weights/folder_info.json b/weights/folder_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..dfe30680042caeb6cf55cb98ddd1e508461c856e
--- /dev/null
+++ b/weights/folder_info.json
@@ -0,0 +1,32 @@
+{
+ "arknights": {
+ "enable": true,
+ "title": "Arknights",
+ "folder_path": "arknights",
+ "description": "RVC Arknights"
+ },
+ "azur-lane": {
+ "enable": true,
+ "title": "Azur Lane",
+ "folder_path": "azur-lane",
+ "description": "RVC Azur Lane"
+ },
+ "blue-archive": {
+ "enable": true,
+ "title": "Blue Archive",
+ "folder_path": "blue-archive",
+ "description": "RVC Blue Archive"
+ },
+ "genshin-impact": {
+ "enable": true,
+ "title": "Genshin Impact",
+ "folder_path": "genshin-impact",
+ "description": "RVC Genshin Impact"
+ },
+ "honkai-star-rail": {
+ "enable": true,
+ "title": "Honkai Star Rail",
+ "folder_path": "honkai-star-rail",
+ "description": "RVC Honkai Star Rail"
+ }
+}
\ No newline at end of file
diff --git a/weights/genshin-impact/ayaka/added_IVF823_Flat_nprobe_1.index b/weights/genshin-impact/ayaka/added_IVF823_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..8e5efda3245768367657a56f6c833c7c07749da6
--- /dev/null
+++ b/weights/genshin-impact/ayaka/added_IVF823_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d34d21ac7be86ac551ee785c8b99d25ba07ccaa8c856124ff3ca352d84cfc66d
+size 33989059
diff --git a/weights/genshin-impact/ayaka/ayaka.pth b/weights/genshin-impact/ayaka/ayaka.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5e1de715850ef2529cb94f0d64c021cc6461f360
--- /dev/null
+++ b/weights/genshin-impact/ayaka/ayaka.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6e8f22eb54166ad245b3f6dba497a3903f4c406f2a946bab2148ee3c05c23af
+size 54996633
diff --git a/weights/genshin-impact/ayaka/cover.png b/weights/genshin-impact/ayaka/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..ea639c2f7b7a1b090646ab51207198dda8ee3dd0
--- /dev/null
+++ b/weights/genshin-impact/ayaka/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3e8dd7bc35ef681d0ce5f0e13b701a840b3c87e5c593c1370f9ae47afd5f1f89
+size 3364626
diff --git a/weights/genshin-impact/kirara/added_IVF672_Flat_nprobe_1.index b/weights/genshin-impact/kirara/added_IVF672_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..951570e9d8fb09751f0b2d2feffc766d7a788068
--- /dev/null
+++ b/weights/genshin-impact/kirara/added_IVF672_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d81665d33cf0b15b259a9142280a82869170b50fc99a70d90a4cb535b14d6115
+size 27741331
diff --git a/weights/genshin-impact/kirara/cover.png b/weights/genshin-impact/kirara/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..5337ddd584e6ee2db4cf1d98c2552d9e8d98f41e
--- /dev/null
+++ b/weights/genshin-impact/kirara/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:34eca5797592c673fa6f77ca60f27f88d75ab7d58f53b9c3862d12fc2c8ffcd5
+size 1501367
diff --git a/weights/genshin-impact/kirara/kirara.pth b/weights/genshin-impact/kirara/kirara.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6f48325ec973bc35364ec4be614ad6ddccc76855
--- /dev/null
+++ b/weights/genshin-impact/kirara/kirara.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c444de82a81661354f96fd203f0f6535157abcb46e93bbb6bc5e19098fbdba9a
+size 55019812
diff --git a/weights/genshin-impact/model_info.json b/weights/genshin-impact/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..adf5f1015949be2313cb95a5acbc6f88e68b46c2
--- /dev/null
+++ b/weights/genshin-impact/model_info.json
@@ -0,0 +1,18 @@
+{
+ "ayaka": {
+ "enable": true,
+ "model_path": "ayaka.pth",
+ "title": "Genshin Impact - Kamisato Ayaka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF823_Flat_nprobe_1.index",
+ "author": "Mocci24"
+ },
+ "kirara": {
+ "enable": true,
+ "model_path": "kirara.pth",
+ "title": "Genshin Impact - Kirara",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF672_Flat_nprobe_1.index",
+ "author": "Mocci24"
+ }
+}
\ No newline at end of file
diff --git a/weights/honkai-star-rail/bronya/added_IVF255_Flat_nprobe_1_bronya_v1.index b/weights/honkai-star-rail/bronya/added_IVF255_Flat_nprobe_1_bronya_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..c99121d78b110e593fb2c180d77ea2c9a43b587e
--- /dev/null
+++ b/weights/honkai-star-rail/bronya/added_IVF255_Flat_nprobe_1_bronya_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:23a245f059fd6f04d7ae13aa829fe0f2c14912b0dcd237cede4f3f433e33f81d
+size 10563691
diff --git a/weights/honkai-star-rail/bronya/bronya.pth b/weights/honkai-star-rail/bronya/bronya.pth
new file mode 100644
index 0000000000000000000000000000000000000000..f09957ca60f8ac3d5be25b864fbdbc35e6141224
--- /dev/null
+++ b/weights/honkai-star-rail/bronya/bronya.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2f23048d7a0394673df47280c5f623c3f607456b87e605ca6ba7c1f777ab1ee4
+size 55019812
diff --git a/weights/honkai-star-rail/bronya/cover.png b/weights/honkai-star-rail/bronya/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..26baea76a23aa2ced4b393fef6d7701f0cce0061
--- /dev/null
+++ b/weights/honkai-star-rail/bronya/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:409f4e40234348f6545d322934289836a77025a8bbb6d2bb1062ee032f77c1eb
+size 2408278
diff --git a/weights/honkai-star-rail/herta/added_IVF189_Flat_nprobe_1_herta_v2.index b/weights/honkai-star-rail/herta/added_IVF189_Flat_nprobe_1_herta_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..04616934cf04f4edbcdc45ec728b4a4e1d301cda
--- /dev/null
+++ b/weights/honkai-star-rail/herta/added_IVF189_Flat_nprobe_1_herta_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4b34ac06001892863e06df8cc25d1f8234d4a910c39de0c05d56fa864962efb6
+size 23291099
diff --git a/weights/honkai-star-rail/herta/cover.png b/weights/honkai-star-rail/herta/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..7d58e4eeb5cd394a769c15886d2f71858140aec9
--- /dev/null
+++ b/weights/honkai-star-rail/herta/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7c40e4282d795242a032bfa385e52fa80b0cac92b850ccac62be48d835fd9dc5
+size 1638822
diff --git a/weights/honkai-star-rail/herta/herta.pth b/weights/honkai-star-rail/herta/herta.pth
new file mode 100644
index 0000000000000000000000000000000000000000..df26509600b0ea411364eda415efa494257178a2
--- /dev/null
+++ b/weights/honkai-star-rail/herta/herta.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd4ce2c79f5ddd2da1da0462b1df3798164b4ba3cf048ffa2f2c88128ee98c24
+size 55193241
diff --git a/weights/honkai-star-rail/model_info.json b/weights/honkai-star-rail/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..a1ca971bf721237fb8c1e906b732fe8f3b215684
--- /dev/null
+++ b/weights/honkai-star-rail/model_info.json
@@ -0,0 +1,26 @@
+{
+ "bronya": {
+ "enable": true,
+ "model_path": "bronya.pth",
+ "title": "HSR - Bronya",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF255_Flat_nprobe_1_bronya_v1.index",
+ "author": "RRRea"
+ },
+ "herta": {
+ "enable": true,
+ "model_path": "herta.pth",
+ "title": "HSR - Herta",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF189_Flat_nprobe_1_herta_v2.index",
+ "author": "RRRea"
+ },
+ "seele": {
+ "enable": true,
+ "model_path": "seele.pth",
+ "title": "HSR - Herta",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF183_Flat_nprobe_1_seele_v1.index",
+ "author": "RRRea"
+ }
+}
\ No newline at end of file
diff --git a/weights/honkai-star-rail/seele/added_IVF183_Flat_nprobe_1_seele_v1.index b/weights/honkai-star-rail/seele/added_IVF183_Flat_nprobe_1_seele_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..ae1fdeaf37acf48990cc1a8d498955c979d110f1
--- /dev/null
+++ b/weights/honkai-star-rail/seele/added_IVF183_Flat_nprobe_1_seele_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b678fea32ee7e550d075a6173f020c2e88de25766cc8fe8e3d72494f9df3390f
+size 7557475
diff --git a/weights/honkai-star-rail/seele/cover.png b/weights/honkai-star-rail/seele/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..abe1452735f7d7ba59fc5dd2165a5e5b257ef0a5
--- /dev/null
+++ b/weights/honkai-star-rail/seele/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5c896521b207aa106834188ed16787bf281928ed30ec3344209cd75f596cc52b
+size 2625597
diff --git a/weights/honkai-star-rail/seele/seele.pth b/weights/honkai-star-rail/seele/seele.pth
new file mode 100644
index 0000000000000000000000000000000000000000..644789c853aa7109e5c8760f9c7fbac8949d06cf
--- /dev/null
+++ b/weights/honkai-star-rail/seele/seele.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:085b0f38a9adaad4459371cda0437a5064ad37407836a160dea3488b6ad09485
+size 54996633