#!/usr/bin/env python import os from threading import Thread from typing import Iterator import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_id = "utter-project/EuroLLM-9B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") @spaces.GPU(duration=30) def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 512, temperature: float = 0.06, top_p: float = 0.95, top_k: int = 40, repetition_penalty: float = 1.2, ) -> Iterator[str]: historical_text = "" #Prepend the entire chat history to the message with new lines between each message for user, assistant in chat_history: historical_text += f"\n{user}\n{assistant}" if len(historical_text) > 0: message = historical_text + f"\n{message}" input_ids = tokenizer([message], return_tensors="pt").input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, pad_token_id = tokenizer.eos_token_id, repetition_penalty=repetition_penalty, no_repeat_ngram_size=5, early_stopping=False, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=1.2, step=0.1, value=0.2, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Describe the significance of the Eiffel Tower in French culture and history."], ["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"], # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature? ["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"], # Polish: What are the most well-known Polish Christmas traditions? ["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"], # German: What role did the Hanseatic League play in medieval Europe? ["日本の茶道の精神と作法について説明してください。"] # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony. ], ) with gr.Blocks(css="style.css") as demo: chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()