Spaces:
Runtime error
Runtime error
File size: 15,081 Bytes
ebb41db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""Module to define the model."""
# Resources
# https://lightning.ai/docs/pytorch/stable/starter/introduction.html
# https://lightning.ai/docs/pytorch/stable/starter/converting.html
# https://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples/cifar10-baseline.html
import modules.config as config
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchinfo
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
from torchmetrics import Accuracy
# What is the start LR and weight decay you'd prefer?
PREFERRED_START_LR = config.PREFERRED_START_LR
PREFERRED_WEIGHT_DECAY = config.PREFERRED_WEIGHT_DECAY
def detailed_model_summary(model, input_size):
"""Define a function to print the model summary."""
# https://github.com/TylerYep/torchinfo
torchinfo.summary(
model,
input_size=input_size,
batch_dim=0,
col_names=(
"input_size",
"kernel_size",
"output_size",
"num_params",
"trainable",
),
verbose=1,
col_width=16,
)
############# Assignment 12 Model #############
# This is for Assignment 12
# Model used from Assignment 10 and converted to lightning model
class CustomResNet(pl.LightningModule):
"""This defines the structure of the NN."""
# Class variable to print shape
print_shape = False
# Default dropout value
dropout_value = 0.02
def __init__(self):
super().__init__()
# Define loss function
# https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
self.loss_function = torch.nn.CrossEntropyLoss()
# Define accuracy function
# https://torchmetrics.readthedocs.io/en/stable/classification/accuracy.html
self.accuracy_function = Accuracy(task="multiclass", num_classes=10)
# Add results dictionary
self.results = {
"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": [],
"val_loss": [],
"val_acc": [],
}
# Save misclassified images
self.misclassified_image_data = {"images": [], "ground_truths": [], "predicted_vals": []}
# LR
self.learning_rate = PREFERRED_START_LR
# Model Notes
# PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k]
# 1. Input size: 32x32x3
self.prep = nn.Sequential(
nn.Conv2d(
in_channels=3,
out_channels=64,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# Layer1: X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k]
self.layer1_x = nn.Sequential(
nn.Conv2d(
in_channels=64,
out_channels=128,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# Layer1: R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k]
self.layer1_r1 = nn.Sequential(
nn.Conv2d(
in_channels=128,
out_channels=128,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Dropout(self.dropout_value),
nn.Conv2d(
in_channels=128,
out_channels=128,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# Layer 2: Conv 3x3 [256k], MaxPooling2D, BN, ReLU
self.layer2 = nn.Sequential(
nn.Conv2d(
in_channels=128,
out_channels=256,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# Layer 3: X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k]
self.layer3_x = nn.Sequential(
nn.Conv2d(
in_channels=256,
out_channels=512,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# Layer 3: R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k]
self.layer3_r2 = nn.Sequential(
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Dropout(self.dropout_value),
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=(3, 3),
stride=1,
padding=1,
dilation=1,
bias=False,
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Dropout(self.dropout_value),
)
# MaxPooling with Kernel Size 4
# If stride is None, it is set to kernel_size
self.maxpool = nn.MaxPool2d(kernel_size=4, stride=4)
# FC Layer
self.fc = nn.Linear(512, 10)
# Save hyperparameters
self.save_hyperparameters()
def print_view(self, x, msg=""):
"""Print shape of the model"""
if self.print_shape:
if msg != "":
print(msg, "\n\t", x.shape, "\n")
else:
print(x.shape)
def forward(self, x):
"""Forward pass"""
# PrepLayer
x = self.prep(x)
self.print_view(x, "PrepLayer")
# Layer 1
x = self.layer1_x(x)
self.print_view(x, "Layer 1, X")
r1 = self.layer1_r1(x)
self.print_view(r1, "Layer 1, R1")
x = x + r1
self.print_view(x, "Layer 1, X + R1")
# Layer 2
x = self.layer2(x)
self.print_view(x, "Layer 2")
# Layer 3
x = self.layer3_x(x)
self.print_view(x, "Layer 3, X")
r2 = self.layer3_r2(x)
self.print_view(r2, "Layer 3, R2")
x = x + r2
self.print_view(x, "Layer 3, X + R2")
# MaxPooling
x = self.maxpool(x)
self.print_view(x, "Max Pooling")
# FC Layer
# Reshape before FC such that it becomes 1D
x = x.view(x.shape[0], -1)
self.print_view(x, "Reshape before FC")
x = self.fc(x)
self.print_view(x, "After FC")
# Softmax
return F.log_softmax(x, dim=-1)
# Alert: Remove this function later as Tuner is now being used to automatically find the best LR
def find_optimal_lr(self, train_loader):
"""Use LR Finder to find the best starting learning rate"""
# https://github.com/davidtvs/pytorch-lr-finder
# https://github.com/davidtvs/pytorch-lr-finder#notes
# https://github.com/davidtvs/pytorch-lr-finder/blob/master/torch_lr_finder/lr_finder.py
# New optimizer with default LR
tmp_optimizer = optim.Adam(self.parameters(), lr=PREFERRED_START_LR, weight_decay=PREFERRED_WEIGHT_DECAY)
# Create LR finder object
lr_finder = LRFinder(self, optimizer=tmp_optimizer, criterion=self.loss_function)
lr_finder.range_test(train_loader=train_loader, end_lr=10, num_iter=100)
# https://github.com/davidtvs/pytorch-lr-finder/issues/88
_, suggested_lr = lr_finder.plot(suggest_lr=True)
lr_finder.reset()
# plot.figure.savefig("LRFinder - Suggested Max LR.png")
print(f"Suggested Max LR: {suggested_lr}")
if suggested_lr is None:
suggested_lr = PREFERRED_START_LR
return suggested_lr
# optimiser function
def configure_optimizers(self):
"""Add ADAM optimizer to the lightning module"""
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate, weight_decay=PREFERRED_WEIGHT_DECAY)
# Percent start for OneCycleLR
# Handles the case where max_epochs is less than 5
percent_start = 5 / int(self.trainer.max_epochs)
if percent_start >= 1:
percent_start = 0.3
# https://lightning.ai/docs/pytorch/stable/common/optimization.html#total-stepping-batches
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer=optimizer,
max_lr=self.learning_rate,
total_steps=int(self.trainer.estimated_stepping_batches),
pct_start=percent_start,
div_factor=100,
three_phase=False,
anneal_strategy="linear",
final_div_factor=100,
verbose=False,
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
# Define loss function
def compute_loss(self, prediction, target):
"""Compute Loss"""
# Calculate loss
loss = self.loss_function(prediction, target)
return loss
# Define accuracy function
def compute_accuracy(self, prediction, target):
"""Compute accuracy"""
# Calculate accuracy
acc = self.accuracy_function(prediction, target)
return acc * 100
# Function to compute loss and accuracy for both training and validation
def compute_metrics(self, batch):
"""Function to calculate loss and accuracy"""
# Get data and target from batch
data, target = batch
# Generate predictions using model
pred = self(data)
# Calculate loss for the batch
loss = self.compute_loss(prediction=pred, target=target)
# Calculate accuracy for the batch
acc = self.compute_accuracy(prediction=pred, target=target)
return loss, acc
# Get misclassified images based on how many images to return
def store_misclassified_images(self):
"""Get an array of misclassified images"""
self.misclassified_image_data = {"images": [], "ground_truths": [], "predicted_vals": []}
# Initialize the model to evaluation mode
self.eval()
# Disable gradient calculation while testing
with torch.no_grad():
for batch in self.trainer.test_dataloaders:
# Move data and labels to device
data, target = batch
data, target = data.to(self.device), target.to(self.device)
# Predict using model
pred = self(data)
# Get the index of the max log-probability
output = pred.argmax(dim=1)
# Save the incorrect predictions
incorrect_indices = ~output.eq(target)
# Store images incorrectly predicted, generated predictions and the actual value
self.misclassified_image_data["images"].extend(data[incorrect_indices])
self.misclassified_image_data["ground_truths"].extend(target[incorrect_indices])
self.misclassified_image_data["predicted_vals"].extend(output[incorrect_indices])
# training function
def training_step(self, batch, batch_idx):
"""Training step"""
# Compute loss and accuracy
loss, acc = self.compute_metrics(batch)
self.log("train_loss", loss, prog_bar=True, on_epoch=True, logger=True)
self.log("train_acc", acc, prog_bar=True, on_epoch=True, logger=True)
# Return training loss
return loss
# validation function
def validation_step(self, batch, batch_idx):
"""Validation step"""
# Compute loss and accuracy
loss, acc = self.compute_metrics(batch)
self.log("val_loss", loss, prog_bar=True, on_epoch=True, logger=True)
self.log("val_acc", acc, prog_bar=True, on_epoch=True, logger=True)
# Return validation loss
return loss
# test function will just use validation step
def test_step(self, batch, batch_idx):
"""Test step"""
# Compute loss and accuracy
loss, acc = self.compute_metrics(batch)
self.log("test_loss", loss, prog_bar=False, on_epoch=True, logger=True)
self.log("test_acc", acc, prog_bar=False, on_epoch=True, logger=True)
# Return validation loss
return loss
# At the end of train epoch append the training loss and accuracy to an instance variable called results
def on_train_epoch_end(self):
"""On train epoch end"""
# Append training loss and accuracy to results
self.results["train_loss"].append(self.trainer.callback_metrics["train_loss"].detach().item())
self.results["train_acc"].append(self.trainer.callback_metrics["train_acc"].detach().item())
# At the end of validation epoch append the validation loss and accuracy to an instance variable called results
def on_validation_epoch_end(self):
"""On validation epoch end"""
# Append validation loss and accuracy to results
self.results["test_loss"].append(self.trainer.callback_metrics["val_loss"].detach().item())
self.results["test_acc"].append(self.trainer.callback_metrics["val_acc"].detach().item())
# # At the end of test epoch append the test loss and accuracy to an instance variable called results
# def on_test_epoch_end(self):
# """On test epoch end"""
# # Append test loss and accuracy to results
# self.results["test_loss"].append(self.trainer.callback_metrics["test_loss"].detach().item())
# self.results["test_acc"].append(self.trainer.callback_metrics["test_acc"].detach().item())
# At the end of test save misclassified images, the predictions and ground truth in an instance variable called misclassified_image_data
def on_test_end(self):
"""On test end"""
print("Test ended! Saving misclassified images")
# Get misclassified images
self.store_misclassified_images()
|