import spaces import gradio as gr from huggingface_hub import hf_hub_download import json import torch import os from env import AttrDict from meldataset import mel_spectrogram, MAX_WAV_VALUE from models import BigVGAN as Generator import librosa import numpy as np from utils import plot_spectrogram, plot_spectrogram_clipped import PIL if torch.cuda.is_available(): device = torch.device('cuda') torch.backends.cudnn.benchmark = False print(f"using GPU") else: device = torch.device('cpu') print(f"using CPU") def load_checkpoint(filepath): assert os.path.isfile(filepath) print("Loading '{}'".format(filepath)) checkpoint_dict = torch.load(filepath, map_location='cpu') print("Complete.") return checkpoint_dict def inference_gradio(input, model_choice): # input is audio waveform in [T, channel] sr, audio = input # unpack input to sampling rate and audio itself audio = np.transpose(audio) # transpose to [channel, T] for librosa audio = audio / MAX_WAV_VALUE # convert int16 to float range used by BigVGAN h = list_config[model_choice] model = list_model[model_choice] if sr != h.sampling_rate: # convert audio to model's sampling rate audio = librosa.resample(audio, orig_sr=sr, target_sr=h.sampling_rate) if len(audio.shape) == 2: # stereo audio = librosa.to_mono(audio) # convert to mono if stereo audio = librosa.util.normalize(audio) * 0.95 output, spec_gen = inference_model(audio, h, model) # output is generated audio in ndarray spec_plot_gen = plot_spectrogram(spec_gen.numpy()) output_video = gr.make_waveform((h.sampling_rate, output)) output_image_gen = PIL.Image.frombytes('RGB', spec_plot_gen.canvas.get_width_height(), spec_plot_gen.canvas.tostring_rgb()) return output_video, output_image_gen @spaces.GPU(duration=120) def inference_model(audio_input, h, model): model.to(device) def get_mel(x): return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax) with torch.inference_mode(): wav = torch.FloatTensor(audio_input) # compute mel spectrogram from the ground truth audio spec_gt = get_mel(wav.unsqueeze(0)).to(device) y_g_hat = model(spec_gt) audio_gen = y_g_hat.squeeze() spec_gen = get_mel(audio_gen.unsqueeze(0)) audio_gen = audio_gen * MAX_WAV_VALUE audio_gen = audio_gen.cpu().numpy().astype('int16') return audio_gen, spec_gen[0].cpu() css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ ######################## script for loading the models ######################## model_path = "L0SG/BigVGAN" list_model_name = [ "bigvgan_24khz_100band", "bigvgan_base_24khz_100band", "bigvgan_22khz_80band", "bigvgan_base_22khz_80band", "bigvgan_v2_22khz_80band_256x", "bigvgan_v2_22khz_80band_fmax8k_256x", "bigvgan_v2_24khz_100band_256x", "bigvgan_v2_44khz_128band_256x", "bigvgan_v2_44khz_128band_512x" ] model_files = { "bigvgan_24khz_100band": "g_05000000", "bigvgan_base_24khz_100band": "g_05000000", "bigvgan_22khz_80band": "g_05000000", "bigvgan_base_22khz_80band": "g_05000000", "bigvgan_v2_22khz_80band_256x": "g_03000000", "bigvgan_v2_22khz_80band_fmax8k_256x": "g_03000000", "bigvgan_v2_24khz_100band_256x": "g_03000000", "bigvgan_v2_44khz_128band_256x": "g_03000000", "bigvgan_v2_44khz_128band_512x": "g_03000000" } list_model = [] list_config = [] for model_name in list_model_name: model_file = hf_hub_download(model_path, f"{model_name}/{model_files[model_name]}") config_file = hf_hub_download(model_path, f"{model_name}/config.json") with open(config_file) as f: data = f.read() json_config = json.loads(data) h = AttrDict(json_config) torch.manual_seed(h.seed) generator = Generator(h) state_dict_g = load_checkpoint(model_file) generator.load_state_dict(state_dict_g['generator']) generator.eval() generator.remove_weight_norm() list_model.append(generator) list_config.append(h) ######################## script for gradio UI ######################## iface = gr.Blocks(css=css) with iface: gr.HTML( """
[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
Folder Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params. | Dataset | Fine-Tuned |
---|---|---|---|---|---|---|---|
bigvgan_v2_44khz_128band_512x | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | No |
bigvgan_v2_44khz_128band_256x | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | No |
bigvgan_v2_24khz_100band_256x | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | No |
bigvgan_v2_22khz_80band_256x | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | No |
bigvgan_v2_22khz_80band_fmax8k_256x | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | No |
bigvgan_24khz_100band | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | No |
bigvgan_base_24khz_100band | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | No |
bigvgan_22khz_80band | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | No |
bigvgan_base_22khz_80band | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | No |
NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).
""" ) iface.queue() iface.launch()