ntam0001 commited on
Commit
0b065b5
·
verified ·
1 Parent(s): 3b03584

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import pandas as pd
4
+ from ucimlrepo import fetch_ucirepo
5
+
6
+ # Load the trained model
7
+ model = joblib.load("model.pkl")
8
+
9
+ # Define feature columns
10
+ FEATURE_COLUMNS = ['radius1', 'texture1', 'perimeter1', 'area1', 'smoothness1',
11
+ 'compactness1', 'concavity1', 'concave_points1', 'symmetry1',
12
+ 'fractal_dimension1', 'radius2', 'texture2', 'perimeter2', 'area2',
13
+ 'smoothness2', 'compactness2', 'concavity2', 'concave_points2',
14
+ 'symmetry2', 'fractal_dimension2', 'radius3', 'texture3', 'perimeter3',
15
+ 'area3', 'smoothness3', 'compactness3', 'concavity3', 'concave_points3',
16
+ 'symmetry3', 'fractal_dimension3']
17
+
18
+ # Prediction function
19
+ def predict(*features):
20
+ input_data = pd.DataFrame([features], columns=FEATURE_COLUMNS)
21
+ prediction = model.predict(input_data)
22
+ return "Malignant" if prediction[0] == 1 else "Benign"
23
+
24
+ # Gradio interface
25
+ iface = gr.Interface(
26
+ fn=predict,
27
+ inputs=[gr.Number(label=col) for col in FEATURE_COLUMNS],
28
+ outputs="text",
29
+ title="Breast Cancer Diagnosis Predictor",
30
+ description="Enter the values of the features to predict the diagnosis."
31
+ )
32
+
33
+ if __name__ == "__main__":
34
+ iface.launch()