import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
CREDITS_TEXT,
HEADERS_MAPPING,
ICON_MAPPING,
INTRO_TEXT_AR,
INTRO_TEXT_EN,
INTRO_TEXT_FR,
LOGO,
REVIEW_TEXT,
SLOGAN,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou Map نتعاونو",
)
# """
#
#
#
#
# """
st.markdown(
"""
""",
unsafe_allow_html=True,
)
# # Initialize States
# if "sleep_time" not in st.session_state:
# st.session_state.sleep_time = 2
# if "auto_refresh" not in st.session_state:
# st.session_state.auto_refresh = False
# auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
# if auto_refresh:
# number = st.sidebar.number_input(
# "Refresh rate in seconds", value=st.session_state.sleep_time
# )
# st.session_state.sleep_time = number
# Streamlit functions
def display_interventions(interventions_df):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if pd.isna(village_status):
continue
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"Intervention Status: {status}
Village Status: {village_status.split('/')[0]}
Org: {org}
Intervention: {intervention_type}
Population: {population}
📅 Date: {date}"
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
))
def show_requests(filtered_df):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
display_text = f'Request Type: {request_type}
Id: {row["id"]}
Google Maps'
icon_name = ICON_MAPPING.get(request_type, "info-sign")
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name
),
))
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
if for_help_requests:
st.markdown(
"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at nt3awnoumorocco@gmail.com",
)
st.markdown(
"""
nt3awnoumorocco@gmail.com نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
st.subheader("🔍 Review of requests")
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# # Logo and Title
# st.markdown(LOGO, unsafe_allow_html=True)
# # st.title("Nt3awnou نتعاونو")
# st.markdown(SLOGAN, unsafe_allow_html=True)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
fg = folium.FeatureGroup(name="Markers")
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
df["id"] = df.index
filtered_df = df
display_interventions(interventions_df)
# # Show requests
show_requests(df)
st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")
# tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
# with tab_en:
# st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
# with tab_ar:
# st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
# with tab_fr:
# st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)
# # Requests table
# st.divider()
# st.subheader("📝 **Table of requests / جدول الطلبات**")
# drop_cols = [
# "(عند الامكان) رقم هاتف شخص موجود في عين المكان",
# "الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
# "GeoStamp",
# "GeoCode",
# "GeoAddress",
# "Status",
# "id",
# ]
# display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True, for_help_requests=True)
# # Interventions table
# st.divider()
# st.subheader("📝 **Table of interventions / جدول التدخلات**")
# display_dataframe(
# interventions_df,
# [], # We show NGOs contact information
# INTERVENTIONS_URL,
# search_id=False,
# status=True,
# for_help_requests=False,
# )
# # Submit an id for review
# st.divider()
# id_review_submission()
# # Donations can be made to the gouvernmental fund under the name
# st.divider()
# st.subheader("📝 **Donations / التبرعات / Dons**")
# tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
# with tab_en:
# st.markdown(
# """
#
#
The official bank account dedicated to tackle the consequences of the earthquake is:
#
Account number:
#
126
#
RIB: 001-810-0078000201106203-18
#
#
For the money transfers coming from outside Morocco
#
#
IBAN: MA64001810007800020110620318
#
# """,
# unsafe_allow_html=True,
# )
# with tab_ar:
# st.markdown(
# """
#
#
الحساب البنكي الرسمي المخصص لمواجهة عواقب الزلزال
# رقم الحساب
# 126
# RIB: 001-810-0078000201106203-18
#
# للتحويلات القادمة من خارج المغرب
#
# IBAN: MA64001810007800020110620318
#
#
# """,
# unsafe_allow_html=True,
# )
# with tab_fr:
# st.markdown(
# """
#
#
Le compte bancaire officiel dédié à la lutte contre les conséquences du séisme est le suivant:
# Numéro de compte:
# 126
# RIB: 001-810-0078000201106203-18
#
# Pour les transferts d'argent en provenance de l'étranger
#
# IBAN: MA64001810007800020110620318
#
# """,
# unsafe_allow_html=True,
# )
# # Credits
# st.markdown(
# CREDITS_TEXT,
# unsafe_allow_html=True,
# )
# if auto_refresh:
# time.sleep(number)
# st.experimental_rerun()