import os import streamlit as st import pandas as pd from pandasai import Agent from langchain_groq import ChatGroq llm = ChatGroq( model=os.environ['MODEL_NAME'], temperature=0, max_retries=2, ) # Initialize session state for URL and DataFrame if 'pre_url' not in st.session_state: st.session_state['pre_url'] = '' if 'df' not in st.session_state: st.session_state['df'] = None # Streamlit app st.title("Conversation Analysis") # Introduction and Explanation st.markdown(""" ## Go beyond static visualizations! This app lets you directly ask for the insights you need from Polis conversation data. Instead of being limited to a standard PCA chart, you can request custom plots and analyses using natural language. > :bulb: For example, try asking for: "**Show me a pie chart of the most common sentiment expressed in these comments.**" """) # Step 1: Choose conversation opendata_options = [ '15-per-hour-seattle', 'american-assembly.bowling-green', 'brexit-consensus', 'canadian-electoral-reform', 'football-concussions', 'march-on.operation-marchin-orders', 'scoop-hivemind.affordable-housing', 'scoop-hivemind.biodiversity', 'scoop-hivemind.freshwater', 'scoop-hivemind.taxes', 'scoop-hivemind.ubi', 'ssis.land-bank-farmland.2rumnecbeh.2021-08-01', 'vtaiwan.uberx' ] selected_option = st.selectbox("Choose conversation", opendata_options) url = ( f"https://raw.githubusercontent.com/compdemocracy/openData/master/{selected_option}/comments.csv" ) # Load data only if URL changes if st.session_state['pre_url'] != url: agent = Agent( pd.read_csv(url, index_col=0), config={"llm": llm} ) st.session_state['agent'] = agent st.session_state['pre_url'] = url # Step 2: Request for analysis or chart with st.form('Analyze'): request = st.text_input( "Enter your analysis request:", "Plot a histogram about the distribution of agree, disagree and neutral comments against the topic") submit_button = st.form_submit_button(label="Analyze") # Execute chat and display results if submit_button: if st.session_state['agent'] is not None: file = st.session_state['agent'].chat(request) if os.path.exists(file): st.image(file) else: st.info(file) else: st.warning("Please select a conversation and load data first.")