File size: 7,962 Bytes
b808ec1
f7d725a
e7a4186
 
b808ec1
 
 
 
 
 
 
 
 
 
f7d725a
b808ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d725a
b808ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d725a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b808ec1
 
 
 
 
 
f7d725a
 
b808ec1
 
 
 
 
f7d725a
b808ec1
 
 
 
f7d725a
 
 
 
 
b808ec1
 
 
 
 
 
 
 
 
 
f7d725a
 
 
 
 
 
 
b808ec1
 
 
 
 
 
 
 
 
 
f7d725a
b808ec1
 
f7d725a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b808ec1
 
 
 
 
e7a4186
 
b808ec1
 
f7d725a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b808ec1
 
 
e7a4186
b808ec1
 
 
291adba
 
b808ec1
 
 
e7a4186
b808ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d725a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b808ec1
 
 
 
 
 
 
 
 
 
 
 
 
4703605
b808ec1
 
 
 
 
 
 
 
f7d725a
b808ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a4186
b808ec1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import cv2
import numpy as np
import onnxruntime as ort
import torch
from mediapipe.python.solutions import (drawing_styles, drawing_utils,
                                        holistic, pose)
from torchvision.transforms.v2 import Compose, UniformTemporalSubsample


def draw_skeleton_on_image(
    image: np.ndarray,
    detection_results,
    resize_to: tuple[int, int] = None,
) -> np.ndarray:
    '''
    Draw skeleton on the image.

    Parameters
    ----------
    image : np.ndarray
        Image to draw skeleton on.
    detection_results
        Detection results.
    resize_to : tuple[int, int], optional
        Resize the image to the specified size.

    Returns
    -------
    np.ndarray
        Annotated image with skeleton.
    '''
    annotated_image = np.copy(image)

    # Draw pose connections
    drawing_utils.draw_landmarks(
        annotated_image,
        detection_results.pose_landmarks,
        holistic.POSE_CONNECTIONS,
        landmark_drawing_spec=drawing_styles.get_default_pose_landmarks_style(),
    )
    # Draw left hand connections
    drawing_utils.draw_landmarks(
        annotated_image,
        detection_results.left_hand_landmarks,
        holistic.HAND_CONNECTIONS,
        drawing_utils.DrawingSpec(color=(121, 22, 76), thickness=2, circle_radius=4),
        drawing_utils.DrawingSpec(color=(121, 44, 250), thickness=2, circle_radius=2),
    )
    # Draw right hand connections
    drawing_utils.draw_landmarks(
        annotated_image,
        detection_results.right_hand_landmarks,
        holistic.HAND_CONNECTIONS,
        drawing_utils.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=4),
        drawing_utils.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2),
    )

    if resize_to is not None:
        annotated_image = cv2.resize(
            annotated_image,
            resize_to,
            interpolation=cv2.INTER_AREA,
        )
    return annotated_image


def calculate_angle(
    shoulder: list,
    elbow: list,
    wrist: list,
) -> float:
    '''
    Calculate the angle between the shoulder, elbow, and wrist.

    Parameters
    ----------
    shoulder : list
        Shoulder coordinates.
    elbow : list
        Elbow coordinates.
    wrist : list
        Wrist coordinates.

    Returns
    -------
    float
        Angle in degree between the shoulder, elbow, and wrist.
    '''
    shoulder = np.array(shoulder)
    elbow = np.array(elbow)
    wrist = np.array(wrist)

    radians = np.arctan2(wrist[1] - elbow[1], wrist[0] - elbow[0]) \
        - np.arctan2(shoulder[1] - elbow[1], shoulder[0] - elbow[0])
    angle = np.abs(radians * 180.0 / np.pi)

    if angle > 180.0:
        angle = 360 - angle
    return angle


def do_hands_relax(
    pose_landmarks: list,
    angle_threshold: float = 160.0,
) -> bool:
    '''
    Check if the hand is down.

    Parameters
    ----------
    hand_landmarks : list
        Hand landmarks.
    angle_threshold : float, optional
        Angle threshold, by default 160.0.

    Returns
    -------
    bool
        True if the hand is down, False otherwise.
    '''
    if pose_landmarks is None:
        return True

    landmarks = pose_landmarks.landmark
    left_shoulder = [
        landmarks[pose.PoseLandmark.LEFT_SHOULDER.value].x,
        landmarks[pose.PoseLandmark.LEFT_SHOULDER.value].y,
        landmarks[pose.PoseLandmark.LEFT_SHOULDER.value].visibility,
    ]
    left_elbow = [
        landmarks[pose.PoseLandmark.LEFT_ELBOW.value].x,
        landmarks[pose.PoseLandmark.LEFT_ELBOW.value].y,
        landmarks[pose.PoseLandmark.LEFT_SHOULDER.value].visibility,
    ]
    left_wrist = [
        landmarks[pose.PoseLandmark.LEFT_WRIST.value].x,
        landmarks[pose.PoseLandmark.LEFT_WRIST.value].y,
        landmarks[pose.PoseLandmark.LEFT_SHOULDER.value].visibility,
    ]
    left_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)

    right_shoulder = [
        landmarks[pose.PoseLandmark.RIGHT_SHOULDER.value].x,
        landmarks[pose.PoseLandmark.RIGHT_SHOULDER.value].y,
        landmarks[pose.PoseLandmark.RIGHT_SHOULDER.value].visibility,
    ]
    right_elbow = [
        landmarks[pose.PoseLandmark.RIGHT_ELBOW.value].x,
        landmarks[pose.PoseLandmark.RIGHT_ELBOW.value].y,
        landmarks[pose.PoseLandmark.RIGHT_SHOULDER.value].visibility,
    ]
    right_wrist = [
        landmarks[pose.PoseLandmark.RIGHT_WRIST.value].x,
        landmarks[pose.PoseLandmark.RIGHT_WRIST.value].y,
        landmarks[pose.PoseLandmark.RIGHT_SHOULDER.value].visibility,
    ]
    right_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)

    is_visible = all(
        [
            left_shoulder[2] > 0,
            left_elbow[2] > 0,
            left_wrist[2] > 0,
            right_shoulder[2] > 0,
            right_elbow[2] > 0,
            right_wrist[2] > 0,
        ]
    )

    return all(
        [
            is_visible,
            left_angle < angle_threshold,
            right_angle < angle_threshold,
        ]
    )


def get_predictions(
    inputs: dict,
    ort_session: ort.InferenceSession,
    id2gloss: dict,
    k: int = 3,
) -> list:
    '''
    Get the top-k predictions.

    Parameters
    ----------
    inputs : dict
        Model inputs.
    model : VideoMAEForVideoClassification
        Model to get predictions from.
    k : int, optional
        Number of predictions to return, by default 3.

    Returns
    -------
    list
        Top-k predictions.
    '''
    if inputs is None:
        return []

    logits = torch.from_numpy(ort_session.run(None, inputs)[0])

    # Get top-3 predictions
    topk_scores, topk_indices = torch.topk(logits, k, dim=1)
    topk_scores = torch.nn.functional.softmax(topk_scores, dim=1).squeeze().detach().numpy()
    topk_indices = topk_indices.squeeze().detach().numpy()

    return [
        {
            'label': id2gloss[str(topk_indices[i])],
            'score': topk_scores[i],
        }
        for i in range(k)
    ]


def preprocess(
    model_num_frames: int,
    keypoints_detector,
    source: str,
    model_input_height: int,
    model_input_width: int,
    transform: Compose,
) -> dict:
    '''
    Preprocess the video.

    Parameters
    ----------
    model_num_frames : int
        Number of frames in the model.
    keypoints_detector
        Keypoints detector.
    source : str
        Video source.
    model_input_height : int
        Model input height.
    model_input_width : int
        Model input width.
    transform : Compose
        Transform to apply.

    Returns
    -------
    dict
        Model inputs.
    '''
    skeleton_video = []
    did_sample_start = False

    cap = cv2.VideoCapture(source)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # Detect keypoints.
        detection_results = keypoints_detector.process(frame)
        skeleton_frame = draw_skeleton_on_image(
            image=np.zeros((1080, 1080, 3), dtype=np.uint8),
            detection_results=detection_results,
            resize_to=(model_input_height, model_input_width),
        )

        # (height, width, channels) -> (channels, height, width)
        skeleton_frame = transform(torch.tensor(skeleton_frame).permute(2, 0, 1))

        # Extract sign video.
        if not do_hands_relax(detection_results.pose_landmarks):
            if not did_sample_start:
                did_sample_start = True
        elif did_sample_start:
            break

        if did_sample_start:
            skeleton_video.append(skeleton_frame)

    cap.release()

    if len(skeleton_video) < model_num_frames:
        return None

    skeleton_video = torch.stack(skeleton_video)
    skeleton_video = UniformTemporalSubsample(model_num_frames)(skeleton_video)
    inputs = {
        'pixel_values': skeleton_video.unsqueeze(0).numpy(),
    }

    return inputs