import json from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Define the schema for the database db_schema = { "products": ["product_id", "name", "price", "description", "type"], "orders": ["order_id", "product_id", "quantity", "order_date"], "customers": ["customer_id", "name", "email", "phone_number"] } # Load the model and tokenizer model_name = "EleutherAI/gpt-neo-2.7B" # You can also use "Llama-2-7b" or another model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) def generate_sql_query(context, question): """ This is the description of the database which is given to you, a user can ask anything related to this database Args: context (str): Description of the database schema or table relationships. question (str): User's natural language query. Returns: str: An answer to the question. """ # Prepare the prompt prompt = f""" Context: {context} Question: {question} Query: """ # Tokenize input inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to("cuda" if torch.cuda.is_available() else "cpu") print("Prompt Sent to Model:") print(prompt) # Generate SQL query output = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True) query = tokenizer.decode(output[0], skip_special_tokens=True) # Extract query from the output sql_query = query.split("Query:")[-1].strip() return sql_query # Schema as a context for the model schema_description = json.dumps(db_schema, indent=4) # Example interactive questions questions = [ "describe the product table for me, what kind of data it is storing and all" ] for user_question in questions: print(f"Question: {user_question}") sql_query = generate_sql_query(schema_description, user_question) print(f"Generated SQL Query:\n{sql_query}\n")