from pptx import Presentation import gradio as gr from pdf2image import convert_from_path import pdfplumber from docx import Document import subprocess import os from typing import Optional, List import string import random import re import requests from bs4 import BeautifulSoup import random import logging import time from urllib.parse import urlparse import requests from bs4 import BeautifulSoup import random import logging import time from urllib.parse import urlparse class URLTextExtractor: """ A comprehensive utility for extracting text content from web pages with advanced features. Features: - Rotating User-Agents to mimic different browsers - Robust error handling and retry mechanism - Section preservation for maintaining document structure - Configurable extraction options - Logging support Attributes: USER_AGENTS (list): A comprehensive list of user agent strings to rotate through. logger (logging.Logger): Logger for tracking extraction attempts and errors. Example: >>> extractor = URLTextExtractor() >>> text = extractor.extract_text_from_url('https://example.com') >>> print(text) """ # Expanded list of user agents including mobile and less common browsers USER_AGENTS = [ # Desktop Browsers 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.1 Safari/605.1.15', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:95.0) Gecko/20100101 Firefox/95.0', # Mobile Browsers 'Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1', 'Mozilla/5.0 (Linux; Android 10; SM-G970F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Mobile Safari/537.36', ] def __init__(self, logger=None): """ Initialize the URLTextExtractor. Args: logger (logging.Logger, optional): Custom logger. If not provided, creates a default logger. """ self.logger = logger or self._create_default_logger() def _create_default_logger(self): """ Create a default logger for tracking extraction process. Returns: logging.Logger: Configured logger instance """ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) return logger def _process_element_text(self, element): """ Process text within an element, handling anchor tags specially. Args: element (bs4.element.Tag): BeautifulSoup element to process Returns: str: Processed text with proper spacing """ # Replace anchor tags with spaced text for a_tag in element.find_all('a'): # Add spaces around the anchor text a_tag.replace_with(f' {a_tag.get_text(strip=True)} ') # Get text with separator return element.get_text(separator=' ', strip=True) def extract_text_from_url(self, url, max_retries=3, preserve_sections=True, min_section_length=30, allowed_tags=None): """ Extract text content from a given URL with advanced configuration. Args: url (str): The URL of the webpage to extract text from. max_retries (int, optional): Maximum number of retry attempts. Defaults to 3. preserve_sections (bool, optional): Whether to preserve section separations. Defaults to True. min_section_length (int, optional): Minimum length of text sections to include. Defaults to 30. allowed_tags (list, optional): Specific HTML tags to extract text from. If None, uses a default set of content-rich tags. Returns: str: Extracted text content from the webpage Raises: ValueError: If URL cannot be fetched after maximum retries requests.RequestException: For network-related errors Examples: >>> extractor = URLTextExtractor() >>> text = extractor.extract_text_from_url('https://example.com') >>> text = extractor.extract_text_from_url('https://example.com', preserve_sections=False) """ # Default allowed tags if not specified if allowed_tags is None: allowed_tags = ['p', 'div', 'article', 'section', 'main', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6'] # Validate URL try: parsed_url = urlparse(url) if not all([parsed_url.scheme, parsed_url.netloc]): # raise ValueError("Invalid URL format") return None except Exception as e: self.logger.error(f"URL parsing error: {e}") raise for attempt in range(max_retries): try: # Randomly select a user agent headers = { 'User-Agent': random.choice(self.USER_AGENTS), 'Accept-Language': 'en-US,en;q=0.9', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8' } # Send a GET request to the URL response = requests.get( url, headers=headers, timeout=10, allow_redirects=True ) # Raise an exception for bad status codes response.raise_for_status() # Log successful fetch self.logger.info(f"Successfully fetched URL: {url}") # Parse the HTML content soup = BeautifulSoup(response.text, 'html.parser') # Remove unwanted elements for script in soup(["script", "style", "head", "header", "footer", "nav"]): script.decompose() # Extract text with section preservation if preserve_sections: # Extract text from specified tags sections = [] for tag in allowed_tags: for element in soup.find_all(tag): # Process element text, handling anchor tags section_text = self._process_element_text(element) # Only add sections meeting minimum length if len(section_text) >= min_section_length: sections.append(section_text) # Join sections with newline text = '\n'.join(sections) else: # If not preserving sections, use modified text extraction text = ' '.join(self._process_element_text(element) for tag in allowed_tags for element in soup.find_all(tag)) # Remove excessive whitespace and empty lines text = '\n'.join(line.strip() for line in text.split('\n') if line.strip()) return text except (requests.RequestException, ValueError) as e: # Log error details self.logger.warning(f"Attempt {attempt + 1} failed: {e}") # If it's the last retry, raise the error if attempt == max_retries - 1: self.logger.error(f"Failed to fetch URL after {max_retries} attempts") raise ValueError(f"Error fetching URL after {max_retries} attempts: {e}") # Exponential backoff wait_time = 2 ** attempt self.logger.info(f"Waiting {wait_time} seconds before retry") time.sleep(wait_time) # Fallback (though this should never be reached due to the raise in the loop) return None def extract_text_from_pptx(file_path): prs = Presentation(file_path) text_content = [] for slide in prs.slides: slide_text = [] for shape in slide.shapes: if hasattr(shape, "text"): slide_text.append(shape.text) text_content.append("\n".join(slide_text)) return "\n\n".join(text_content) def extract_text_from_ppt(file_path): try: # Convert PPT to PPTX using unoconv pptx_file_path = os.path.splitext(file_path)[0] + ".pptx" subprocess.run(["unoconv", "-f", "pptx", file_path], check=True) # Extract text from PPTX presentation = Presentation(pptx_file_path) text_content = [] for slide in presentation.slides: slide_text = [] for shape in slide.shapes: if hasattr(shape, "text"): slide_text.append(shape.text) text_content.append("\n".join(slide_text)) # Remove the converted PPTX file os.remove(pptx_file_path) return "\n\n".join(text_content) except Exception as e: print(f"Error extracting text from PPT file: {e}") return "Error extracting text from PPT file" def extract_text_from_ppt_or_pptx(file_path): if file_path.endswith(".pptx"): return extract_text_from_pptx(file_path) elif file_path.endswith(".ppt"): return extract_text_from_ppt(file_path) else: return "Unsupported file type. Please provide a .ppt or .pptx file." def convert_pdf_to_image(file): images = convert_from_path(file) return images def extract_text_from_pdf(file): text = "" with pdfplumber.open(file) as pdf: for page in pdf.pages: text += page.extract_text() + "\n" return text def extract_text_from_docx(file): text = "" doc = Document(file.name) for paragraph in doc.paragraphs: text += paragraph.text + "\n" return text def convert_doc_to_text(doc_path): try: subprocess.run( ["unoconv", "--format", "txt", doc_path], capture_output=True, text=True, check=True, ) txt_file_path = doc_path.replace(".doc", ".txt") with open(txt_file_path, "r") as f: text = f.read() text = text.lstrip("\ufeff") os.remove(txt_file_path) return text except subprocess.CalledProcessError as e: print(f"Error converting {doc_path} to text: {e}") return "" def extract_text_from_doc_or_docx(file): if file.name.endswith(".docx"): return extract_text_from_docx(file) elif file.name.endswith(".doc"): return convert_doc_to_text(file.name) else: return "Unsupported file type. Please upload a .doc or .docx file." # function that generates a random string def generate_random_string(length=23): characters = string.ascii_letters + string.digits # Includes letters and digits random_string = "".join(random.choice(characters) for _ in range(length)) return random_string # function that adds the necessary json fields def handle_json_output(json_list: list): n = len(json_list) for i in range(n): # not last element random_string1 = generate_random_string() random_string2 = generate_random_string() element = json_list[i] front = element["frontText"] back = element["backText"] element["frontHTML"] = ( f'
' f"

{front}

" ) element["backHTML"] = ( f'
' f"

{back}

" ) element["termType"] = "basic" cloze_matches = re.findall(r"_{2,}", front) # match only the first one, if there is multiple don't do anything if (cloze_matches != []) & (len(cloze_matches) <= 2): # It's a cloze type card element["termType"] = "cloze" # inject the back in a span format into the front def replace_cloze(match): return f'

{back}

' front_html = re.sub(r"_{2,}", replace_cloze, front) element["frontHTML"] = ( f'

' f"

{front_html}

" ) def replace_underscores(match): return f" {back} " element["frontText"] = re.sub(r"_{2,}", replace_underscores, front) element["backText"] = "" element["backHTML"] = ( f'
' f"


" ) return json_list def sanitize_list_of_lists(text: str) -> Optional[List[List]]: left = text.find("[") right = text.rfind("]") text = text[left : right + 1] try: # Safely evaluate the string to a Python object list_of_lists = eval(text) if isinstance(list_of_lists, list): # Ensure it's a list out = [] try: # parse list of lists for front, back in list_of_lists: out.append({"frontText": front, "backText": back}) return handle_json_output(out) # errors except Exception as e: print(e) # return anything that was already parsed if out != []: return handle_json_output(out) # original schedma is not respected else: return None else: print("The evaluated object is not a list.") return None except Exception as e: print(f"Error parsing the list of lists: {e}") return None extractor = URLTextExtractor() def parse_url(url): return extractor.extract_text_from_url(url) pdf_to_img = gr.Interface( convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img" ) pdf_to_text = gr.Interface( extract_text_from_pdf, gr.File(), gr.Textbox(placeholder="Extracted text will appear here"), api_name="pdf_to_text", ) doc_or_docx_to_text = gr.Interface( extract_text_from_doc_or_docx, gr.File(), gr.Textbox(placeholder="Extracted text from DOC or DOCX will appear here"), api_name="doc_or_docx_to_text", ) pptx_or_ppt_to_text = gr.Interface( extract_text_from_ppt_or_pptx, gr.File(), gr.Textbox(placeholder="Extracted text from PPTX will appear here"), api_name="pptx_or_ppt_to_text", ) str_to_json = gr.Interface( sanitize_list_of_lists, gr.Text(), gr.JSON(), api_name="str_to_json", examples=[ """[ ["What year was the Carthaginian Empire founded?", "Around 814 BCE"], ["Where was the center of the Carthaginian Empire located?", "Carthage, near present-day Tunis, Tunisia"], ["Which powerful ancient republic did Carthage have conflicts with?", "The Roman Republic"], ["Fill in the blank: Hannibal famously crossed the ________ with war elephants.", "Alps"], ["What were the series of conflicts between Carthage and Rome called?", "The Punic Wars"], ["Multiple Choice: What was a significant military advantage of Carthage? A) Strong infantry, B) Powerful navy, C) Fortified cities", "B) Powerful navy"], ["In what year was Carthage captured and destroyed by Rome?", "146 BCE"], ["What did Carthage excel in that allowed it to amass wealth?", "Maritime trade"] ]""" ], ) url_parser = gr.Interface( parse_url, inputs=["text"], outputs=["text"], api_name="url_to_text", ) demo = gr.TabbedInterface( [pdf_to_img, pdf_to_text, doc_or_docx_to_text, pptx_or_ppt_to_text, url_parser, str_to_json], [ "PDF to Image", "Extract PDF Text", "Extract DOC/DOCX Text", "Extract PPTX/PPT Text", "Extract text from URL", "Extract Json", ], ) demo.launch(server_name="0.0.0.0.", server_port=7860, debug=True)