add background removal & restructure code into multiple files
Browse files- app.py +33 -394
- background_removal.py +29 -0
- base_utils.py +413 -0
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,391 +1,17 @@
|
|
1 |
-
from pptx import Presentation
|
2 |
import gradio as gr
|
3 |
-
from pdf2image import convert_from_path
|
4 |
-
import pdfplumber
|
5 |
-
from docx import Document
|
6 |
-
import subprocess
|
7 |
-
import os
|
8 |
-
from typing import Optional, List
|
9 |
-
import string
|
10 |
-
import random
|
11 |
-
import re
|
12 |
-
import requests
|
13 |
-
from bs4 import BeautifulSoup
|
14 |
-
import logging
|
15 |
-
import time
|
16 |
-
from urllib.parse import urlparse
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
"""
|
21 |
-
A comprehensive utility for extracting text content from web pages with advanced features.
|
22 |
-
|
23 |
-
Features:
|
24 |
-
- Rotating User-Agents to mimic different browsers
|
25 |
-
- Robust error handling and retry mechanism
|
26 |
-
- Section preservation for maintaining document structure
|
27 |
-
- Configurable extraction options
|
28 |
-
- Logging support
|
29 |
-
|
30 |
-
Attributes:
|
31 |
-
USER_AGENTS (list): A comprehensive list of user agent strings to rotate through.
|
32 |
-
logger (logging.Logger): Logger for tracking extraction attempts and errors.
|
33 |
-
|
34 |
-
Example:
|
35 |
-
>>> extractor = URLTextExtractor()
|
36 |
-
>>> text = extractor.extract_text_from_url('https://example.com')
|
37 |
-
>>> print(text)
|
38 |
-
"""
|
39 |
-
|
40 |
-
# Expanded list of user agents including mobile and less common browsers
|
41 |
-
USER_AGENTS = [
|
42 |
-
# Desktop Browsers
|
43 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
44 |
-
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.1 Safari/605.1.15',
|
45 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:95.0) Gecko/20100101 Firefox/95.0',
|
46 |
-
|
47 |
-
# Mobile Browsers
|
48 |
-
'Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1',
|
49 |
-
'Mozilla/5.0 (Linux; Android 10; SM-G970F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Mobile Safari/537.36',
|
50 |
-
]
|
51 |
-
|
52 |
-
def __init__(self, logger=None):
|
53 |
-
"""
|
54 |
-
Initialize the URLTextExtractor.
|
55 |
-
|
56 |
-
Args:
|
57 |
-
logger (logging.Logger, optional): Custom logger.
|
58 |
-
If not provided, creates a default logger.
|
59 |
-
"""
|
60 |
-
self.logger = logger or self._create_default_logger()
|
61 |
-
|
62 |
-
def _create_default_logger(self):
|
63 |
-
"""
|
64 |
-
Create a default logger for tracking extraction process.
|
65 |
-
|
66 |
-
Returns:
|
67 |
-
logging.Logger: Configured logger instance
|
68 |
-
"""
|
69 |
-
logger = logging.getLogger(__name__)
|
70 |
-
logger.setLevel(logging.INFO)
|
71 |
-
handler = logging.StreamHandler()
|
72 |
-
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
73 |
-
handler.setFormatter(formatter)
|
74 |
-
logger.addHandler(handler)
|
75 |
-
return logger
|
76 |
-
|
77 |
-
def _process_element_text(self, element):
|
78 |
-
"""
|
79 |
-
Process text within an element, handling anchor tags specially.
|
80 |
-
|
81 |
-
Args:
|
82 |
-
element (bs4.element.Tag): BeautifulSoup element to process
|
83 |
-
|
84 |
-
Returns:
|
85 |
-
str: Processed text with proper spacing
|
86 |
-
"""
|
87 |
-
# Replace anchor tags with spaced text
|
88 |
-
for a_tag in element.find_all('a'):
|
89 |
-
# Add spaces around the anchor text
|
90 |
-
a_tag.replace_with(f' {a_tag.get_text(strip=True)} ')
|
91 |
-
|
92 |
-
# Get text with separator
|
93 |
-
return element.get_text(separator=' ', strip=True)
|
94 |
-
|
95 |
-
def extract_text_from_url(self, url, max_retries=3, preserve_sections=True,
|
96 |
-
min_section_length=30, allowed_tags=None):
|
97 |
-
"""
|
98 |
-
Extract text content from a given URL with advanced configuration.
|
99 |
-
|
100 |
-
Args:
|
101 |
-
url (str): The URL of the webpage to extract text from.
|
102 |
-
max_retries (int, optional): Maximum number of retry attempts. Defaults to 3.
|
103 |
-
preserve_sections (bool, optional): Whether to preserve section separations. Defaults to True.
|
104 |
-
min_section_length (int, optional): Minimum length of text sections to include. Defaults to 30.
|
105 |
-
allowed_tags (list, optional): Specific HTML tags to extract text from.
|
106 |
-
If None, uses a default set of content-rich tags.
|
107 |
-
|
108 |
-
Returns:
|
109 |
-
str: Extracted text content from the webpage
|
110 |
-
|
111 |
-
Raises:
|
112 |
-
ValueError: If URL cannot be fetched after maximum retries
|
113 |
-
requests.RequestException: For network-related errors
|
114 |
-
|
115 |
-
Examples:
|
116 |
-
>>> extractor = URLTextExtractor()
|
117 |
-
>>> text = extractor.extract_text_from_url('https://example.com')
|
118 |
-
>>> text = extractor.extract_text_from_url('https://example.com', preserve_sections=False)
|
119 |
-
"""
|
120 |
-
# Default allowed tags if not specified
|
121 |
-
if allowed_tags is None:
|
122 |
-
allowed_tags = ['p', 'div', 'article', 'section', 'main',
|
123 |
-
'h1', 'h2', 'h3', 'h4', 'h5', 'h6']
|
124 |
-
|
125 |
-
# Validate URL
|
126 |
-
try:
|
127 |
-
parsed_url = urlparse(url)
|
128 |
-
if not all([parsed_url.scheme, parsed_url.netloc]):
|
129 |
-
# raise ValueError("Invalid URL format")
|
130 |
-
return None
|
131 |
-
except Exception as e:
|
132 |
-
self.logger.error(f"URL parsing error: {e}")
|
133 |
-
raise
|
134 |
-
|
135 |
-
for attempt in range(max_retries):
|
136 |
-
try:
|
137 |
-
# Randomly select a user agent
|
138 |
-
headers = {
|
139 |
-
'User-Agent': random.choice(self.USER_AGENTS),
|
140 |
-
'Accept-Language': 'en-US,en;q=0.9',
|
141 |
-
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'
|
142 |
-
}
|
143 |
-
|
144 |
-
# Send a GET request to the URL
|
145 |
-
response = requests.get(
|
146 |
-
url,
|
147 |
-
headers=headers,
|
148 |
-
timeout=10,
|
149 |
-
allow_redirects=True
|
150 |
-
)
|
151 |
-
|
152 |
-
# Raise an exception for bad status codes
|
153 |
-
response.raise_for_status()
|
154 |
-
|
155 |
-
# Log successful fetch
|
156 |
-
self.logger.info(f"Successfully fetched URL: {url}")
|
157 |
-
|
158 |
-
# Parse the HTML content
|
159 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
160 |
-
|
161 |
-
# Remove unwanted elements
|
162 |
-
for script in soup(["script", "style", "head", "header", "footer", "nav"]):
|
163 |
-
script.decompose()
|
164 |
-
|
165 |
-
# Extract text with section preservation
|
166 |
-
if preserve_sections:
|
167 |
-
# Extract text from specified tags
|
168 |
-
sections = []
|
169 |
-
for tag in allowed_tags:
|
170 |
-
for element in soup.find_all(tag):
|
171 |
-
# Process element text, handling anchor tags
|
172 |
-
section_text = self._process_element_text(element)
|
173 |
-
|
174 |
-
# Only add sections meeting minimum length
|
175 |
-
if len(section_text) >= min_section_length:
|
176 |
-
sections.append(section_text)
|
177 |
-
|
178 |
-
# Join sections with newline
|
179 |
-
text = '\n'.join(sections)
|
180 |
-
else:
|
181 |
-
# If not preserving sections, use modified text extraction
|
182 |
-
text = ' '.join(self._process_element_text(element)
|
183 |
-
for tag in allowed_tags
|
184 |
-
for element in soup.find_all(tag))
|
185 |
-
|
186 |
-
# Remove excessive whitespace and empty lines
|
187 |
-
text = '\n'.join(line.strip() for line in text.split('\n') if line.strip())
|
188 |
-
|
189 |
-
return text
|
190 |
-
|
191 |
-
except (requests.RequestException, ValueError) as e:
|
192 |
-
# Log error details
|
193 |
-
self.logger.warning(f"Attempt {attempt + 1} failed: {e}")
|
194 |
-
|
195 |
-
# If it's the last retry, raise the error
|
196 |
-
if attempt == max_retries - 1:
|
197 |
-
self.logger.error(f"Failed to fetch URL after {max_retries} attempts")
|
198 |
-
raise ValueError(f"Error fetching URL after {max_retries} attempts: {e}")
|
199 |
-
|
200 |
-
# Exponential backoff
|
201 |
-
wait_time = 2 ** attempt
|
202 |
-
self.logger.info(f"Waiting {wait_time} seconds before retry")
|
203 |
-
time.sleep(wait_time)
|
204 |
-
|
205 |
-
# Fallback (though this should never be reached due to the raise in the loop)
|
206 |
-
return None
|
207 |
-
|
208 |
-
def extract_text_from_pptx(file_path):
|
209 |
-
prs = Presentation(file_path)
|
210 |
-
text_content = []
|
211 |
-
|
212 |
-
for slide in prs.slides:
|
213 |
-
slide_text = []
|
214 |
-
for shape in slide.shapes:
|
215 |
-
if hasattr(shape, "text"):
|
216 |
-
slide_text.append(shape.text)
|
217 |
-
text_content.append("\n".join(slide_text))
|
218 |
-
|
219 |
-
return "\n\n".join(text_content)
|
220 |
-
|
221 |
-
|
222 |
-
def extract_text_from_ppt(file_path):
|
223 |
-
try:
|
224 |
-
print("file_path = ",file_path)
|
225 |
-
# Convert PPT to PPTX using unoconv
|
226 |
-
pptx_file_path = os.path.splitext(file_path)[0] + ".pptx"
|
227 |
-
subprocess.run(["unoconv", "-f", "pptx", file_path], check=True)
|
228 |
-
|
229 |
-
# Extract text from PPTX
|
230 |
-
presentation = Presentation(pptx_file_path)
|
231 |
-
text_content = []
|
232 |
-
|
233 |
-
for slide in presentation.slides:
|
234 |
-
slide_text = []
|
235 |
-
for shape in slide.shapes:
|
236 |
-
if hasattr(shape, "text"):
|
237 |
-
slide_text.append(shape.text)
|
238 |
-
text_content.append("\n".join(slide_text))
|
239 |
-
|
240 |
-
# Remove the converted PPTX file
|
241 |
-
os.remove(pptx_file_path)
|
242 |
-
|
243 |
-
out = "\n\n".join(text_content)
|
244 |
-
return out
|
245 |
-
except Exception as e:
|
246 |
-
print(f"Error extracting text from PPT file: {e}")
|
247 |
-
return "Error extracting text from PPT file"
|
248 |
-
|
249 |
-
|
250 |
-
# def extract_text_from_ppt_or_pptx(file_path):
|
251 |
-
# if file_path.endswith(".pptx"):
|
252 |
-
# return extract_text_from_pptx(file_path)
|
253 |
-
# elif file_path.endswith(".ppt"):
|
254 |
-
# return extract_text_from_ppt(file_path)
|
255 |
-
# else:
|
256 |
-
# return "Unsupported file type. Please provide a .ppt or .pptx file."
|
257 |
-
|
258 |
-
|
259 |
-
def convert_pdf_to_image(file):
|
260 |
-
images = convert_from_path(file)
|
261 |
-
return images
|
262 |
-
|
263 |
-
|
264 |
-
def extract_text_from_pdf(file):
|
265 |
-
text = ""
|
266 |
-
with pdfplumber.open(file) as pdf:
|
267 |
-
for page in pdf.pages:
|
268 |
-
text += page.extract_text() + "\n"
|
269 |
-
return text
|
270 |
-
|
271 |
-
|
272 |
-
def extract_text_from_docx(file_path):
|
273 |
-
text = ""
|
274 |
-
doc = Document(file_path.name)
|
275 |
-
for paragraph in doc.paragraphs:
|
276 |
-
text += paragraph.text + "\n"
|
277 |
-
return text
|
278 |
-
|
279 |
-
|
280 |
-
def convert_doc_to_text(file_path):
|
281 |
-
try:
|
282 |
-
subprocess.run(
|
283 |
-
["unoconv", "--format", "txt", file_path],
|
284 |
-
capture_output=True,
|
285 |
-
text=True,
|
286 |
-
check=True,
|
287 |
-
)
|
288 |
-
txt_file_path = file_path.replace(".doc", ".txt")
|
289 |
-
with open(txt_file_path, "r") as f:
|
290 |
-
text = f.read()
|
291 |
-
text = text.lstrip("\ufeff")
|
292 |
-
os.remove(txt_file_path)
|
293 |
-
return text
|
294 |
-
except subprocess.CalledProcessError as e:
|
295 |
-
print(f"Error converting {file_path} to text: {e}")
|
296 |
-
return ""
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
# function that generates a random string
|
301 |
-
def generate_random_string(length=23):
|
302 |
-
characters = string.ascii_letters + string.digits # Includes letters and digits
|
303 |
-
random_string = "".join(random.choice(characters) for _ in range(length))
|
304 |
-
return random_string
|
305 |
-
|
306 |
-
|
307 |
-
# function that adds the necessary json fields
|
308 |
-
def handle_json_output(json_list: list):
|
309 |
-
n = len(json_list)
|
310 |
-
for i in range(n):
|
311 |
-
# not last element
|
312 |
-
random_string1 = generate_random_string()
|
313 |
-
random_string2 = generate_random_string()
|
314 |
-
element = json_list[i]
|
315 |
-
front = element["frontText"]
|
316 |
-
back = element["backText"]
|
317 |
-
element["frontHTML"] = (
|
318 |
-
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
319 |
-
f"<p>{front}</p></div>"
|
320 |
-
)
|
321 |
-
element["backHTML"] = (
|
322 |
-
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
323 |
-
f"<p>{back}</p></div>"
|
324 |
-
)
|
325 |
-
element["termType"] = "basic"
|
326 |
-
cloze_matches = re.findall(r"_{2,}", front)
|
327 |
-
# match only the first one, if there is multiple don't do anything
|
328 |
-
if (cloze_matches != []) & (len(cloze_matches) <= 2):
|
329 |
-
# It's a cloze type card
|
330 |
-
element["termType"] = "cloze"
|
331 |
-
|
332 |
-
# inject the back in a span format into the front
|
333 |
-
def replace_cloze(match):
|
334 |
-
return f'</p><p><span class="closure">{back}</span></p><p>'
|
335 |
-
|
336 |
-
front_html = re.sub(r"_{2,}", replace_cloze, front)
|
337 |
-
element["frontHTML"] = (
|
338 |
-
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
339 |
-
f"<p>{front_html}</p></div>"
|
340 |
-
)
|
341 |
-
|
342 |
-
def replace_underscores(match):
|
343 |
-
return f" {back} "
|
344 |
-
|
345 |
-
element["frontText"] = re.sub(r"_{2,}", replace_underscores, front)
|
346 |
-
element["backText"] = ""
|
347 |
-
|
348 |
-
element["backHTML"] = (
|
349 |
-
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
350 |
-
f"<p><br></p></div>"
|
351 |
-
)
|
352 |
-
|
353 |
-
return json_list
|
354 |
-
|
355 |
-
|
356 |
-
def sanitize_list_of_lists(text: str) -> Optional[List[List]]:
|
357 |
-
left = text.find("[")
|
358 |
-
right = text.rfind("]")
|
359 |
-
text = text[left : right + 1]
|
360 |
-
try:
|
361 |
-
# Safely evaluate the string to a Python object
|
362 |
-
list_of_lists = eval(text)
|
363 |
-
if isinstance(list_of_lists, list): # Ensure it's a list
|
364 |
-
out = []
|
365 |
-
try:
|
366 |
-
# parse list of lists
|
367 |
-
for front, back in list_of_lists:
|
368 |
-
out.append({"frontText": front, "backText": back})
|
369 |
-
return handle_json_output(out)
|
370 |
-
# errors
|
371 |
-
except Exception as e:
|
372 |
-
print(e)
|
373 |
-
# return anything that was already parsed
|
374 |
-
if out != []:
|
375 |
-
return handle_json_output(out)
|
376 |
-
# original schedma is not respected
|
377 |
-
else:
|
378 |
-
return None
|
379 |
-
else:
|
380 |
-
print("The evaluated object is not a list.")
|
381 |
-
return None
|
382 |
-
except Exception as e:
|
383 |
-
print(f"Error parsing the list of lists: {e}")
|
384 |
-
return None
|
385 |
-
|
386 |
-
extractor = URLTextExtractor()
|
387 |
-
def parse_url(url):
|
388 |
-
return extractor.extract_text_from_url(url)
|
389 |
|
390 |
pdf_to_img = gr.Interface(
|
391 |
convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img"
|
@@ -398,16 +24,10 @@ pdf_to_text = gr.Interface(
|
|
398 |
)
|
399 |
|
400 |
doc_to_text = gr.Interface(
|
401 |
-
convert_doc_to_text,
|
402 |
-
gr.File(),
|
403 |
-
gr.Textbox(),
|
404 |
-
api_name="doc_to_text"
|
405 |
)
|
406 |
docx_to_text = gr.Interface(
|
407 |
-
extract_text_from_docx,
|
408 |
-
gr.File(),
|
409 |
-
gr.Textbox(),
|
410 |
-
api_name="docx_to_text"
|
411 |
)
|
412 |
|
413 |
ppt_to_text = gr.Interface(
|
@@ -448,8 +68,26 @@ url_parser = gr.Interface(
|
|
448 |
outputs=["text"],
|
449 |
api_name="url_to_text",
|
450 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
demo = gr.TabbedInterface(
|
452 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
[
|
454 |
"PDF to Image",
|
455 |
"Extract PDF Text",
|
@@ -459,6 +97,7 @@ demo = gr.TabbedInterface(
|
|
459 |
"Extract PPTX Text",
|
460 |
"Extract text from URL",
|
461 |
"Extract Json",
|
|
|
462 |
],
|
463 |
)
|
464 |
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from base_utils import (
|
4 |
+
convert_pdf_to_image,
|
5 |
+
extract_text_from_pdf,
|
6 |
+
convert_doc_to_text,
|
7 |
+
extract_text_from_docx,
|
8 |
+
extract_text_from_ppt,
|
9 |
+
extract_text_from_pptx,
|
10 |
+
sanitize_list_of_lists,
|
11 |
+
parse_url,
|
12 |
+
)
|
13 |
|
14 |
+
from background_removal import remove_bg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
pdf_to_img = gr.Interface(
|
17 |
convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img"
|
|
|
24 |
)
|
25 |
|
26 |
doc_to_text = gr.Interface(
|
27 |
+
convert_doc_to_text, gr.File(), gr.Textbox(), api_name="doc_to_text"
|
|
|
|
|
|
|
28 |
)
|
29 |
docx_to_text = gr.Interface(
|
30 |
+
extract_text_from_docx, gr.File(), gr.Textbox(), api_name="docx_to_text"
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
ppt_to_text = gr.Interface(
|
|
|
68 |
outputs=["text"],
|
69 |
api_name="url_to_text",
|
70 |
)
|
71 |
+
|
72 |
+
rmbg = gr.Interface(
|
73 |
+
remove_bg,
|
74 |
+
inputs=["image"],
|
75 |
+
outputs=["image"],
|
76 |
+
api_name="rmbg",
|
77 |
+
)
|
78 |
+
|
79 |
demo = gr.TabbedInterface(
|
80 |
+
[
|
81 |
+
pdf_to_img,
|
82 |
+
pdf_to_text,
|
83 |
+
doc_to_text,
|
84 |
+
docx_to_text,
|
85 |
+
ppt_to_text,
|
86 |
+
pptx_to_text,
|
87 |
+
url_parser,
|
88 |
+
str_to_json,
|
89 |
+
rmbg,
|
90 |
+
],
|
91 |
[
|
92 |
"PDF to Image",
|
93 |
"Extract PDF Text",
|
|
|
97 |
"Extract PPTX Text",
|
98 |
"Extract text from URL",
|
99 |
"Extract Json",
|
100 |
+
"Remove Background",
|
101 |
],
|
102 |
)
|
103 |
|
background_removal.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from loadimg import load_img
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
# Load BiRefNet with weights
|
6 |
+
from transformers import AutoModelForImageSegmentation
|
7 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
|
8 |
+
|
9 |
+
@spaces.GPU
|
10 |
+
def remove_bg(imagepath):
|
11 |
+
# Data settings
|
12 |
+
image_size = (1024, 1024)
|
13 |
+
transform_image = transforms.Compose([
|
14 |
+
transforms.Resize(image_size),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
17 |
+
])
|
18 |
+
|
19 |
+
image = load_img(imagepath).convert("RGB")
|
20 |
+
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
21 |
+
|
22 |
+
# Prediction
|
23 |
+
with torch.no_grad():
|
24 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
25 |
+
pred = preds[0].squeeze()
|
26 |
+
pred_pil = transforms.ToPILImage()(pred)
|
27 |
+
mask = pred_pil.resize(image.size)
|
28 |
+
image.putalpha(mask)
|
29 |
+
return image
|
base_utils.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pptx import Presentation
|
2 |
+
from pdf2image import convert_from_path
|
3 |
+
import pdfplumber
|
4 |
+
from docx import Document
|
5 |
+
import subprocess
|
6 |
+
import os
|
7 |
+
from typing import Optional, List
|
8 |
+
import string
|
9 |
+
import random
|
10 |
+
import re
|
11 |
+
import requests
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
+
import logging
|
14 |
+
import time
|
15 |
+
from urllib.parse import urlparse
|
16 |
+
|
17 |
+
|
18 |
+
class URLTextExtractor:
|
19 |
+
"""
|
20 |
+
A comprehensive utility for extracting text content from web pages with advanced features.
|
21 |
+
|
22 |
+
Features:
|
23 |
+
- Rotating User-Agents to mimic different browsers
|
24 |
+
- Robust error handling and retry mechanism
|
25 |
+
- Section preservation for maintaining document structure
|
26 |
+
- Configurable extraction options
|
27 |
+
- Logging support
|
28 |
+
|
29 |
+
Attributes:
|
30 |
+
USER_AGENTS (list): A comprehensive list of user agent strings to rotate through.
|
31 |
+
logger (logging.Logger): Logger for tracking extraction attempts and errors.
|
32 |
+
|
33 |
+
Example:
|
34 |
+
>>> extractor = URLTextExtractor()
|
35 |
+
>>> text = extractor.extract_text_from_url('https://example.com')
|
36 |
+
>>> print(text)
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Expanded list of user agents including mobile and less common browsers
|
40 |
+
USER_AGENTS = [
|
41 |
+
# Desktop Browsers
|
42 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
43 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.1 Safari/605.1.15",
|
44 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:95.0) Gecko/20100101 Firefox/95.0",
|
45 |
+
# Mobile Browsers
|
46 |
+
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1",
|
47 |
+
"Mozilla/5.0 (Linux; Android 10; SM-G970F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Mobile Safari/537.36",
|
48 |
+
]
|
49 |
+
|
50 |
+
def __init__(self, logger=None):
|
51 |
+
"""
|
52 |
+
Initialize the URLTextExtractor.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
logger (logging.Logger, optional): Custom logger.
|
56 |
+
If not provided, creates a default logger.
|
57 |
+
"""
|
58 |
+
self.logger = logger or self._create_default_logger()
|
59 |
+
|
60 |
+
def _create_default_logger(self):
|
61 |
+
"""
|
62 |
+
Create a default logger for tracking extraction process.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
logging.Logger: Configured logger instance
|
66 |
+
"""
|
67 |
+
logger = logging.getLogger(__name__)
|
68 |
+
logger.setLevel(logging.INFO)
|
69 |
+
handler = logging.StreamHandler()
|
70 |
+
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
71 |
+
handler.setFormatter(formatter)
|
72 |
+
logger.addHandler(handler)
|
73 |
+
return logger
|
74 |
+
|
75 |
+
def _process_element_text(self, element):
|
76 |
+
"""
|
77 |
+
Process text within an element, handling anchor tags specially.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
element (bs4.element.Tag): BeautifulSoup element to process
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: Processed text with proper spacing
|
84 |
+
"""
|
85 |
+
# Replace anchor tags with spaced text
|
86 |
+
for a_tag in element.find_all("a"):
|
87 |
+
# Add spaces around the anchor text
|
88 |
+
a_tag.replace_with(f" {a_tag.get_text(strip=True)} ")
|
89 |
+
|
90 |
+
# Get text with separator
|
91 |
+
return element.get_text(separator=" ", strip=True)
|
92 |
+
|
93 |
+
def extract_text_from_url(
|
94 |
+
self,
|
95 |
+
url,
|
96 |
+
max_retries=3,
|
97 |
+
preserve_sections=True,
|
98 |
+
min_section_length=30,
|
99 |
+
allowed_tags=None,
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
Extract text content from a given URL with advanced configuration.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
url (str): The URL of the webpage to extract text from.
|
106 |
+
max_retries (int, optional): Maximum number of retry attempts. Defaults to 3.
|
107 |
+
preserve_sections (bool, optional): Whether to preserve section separations. Defaults to True.
|
108 |
+
min_section_length (int, optional): Minimum length of text sections to include. Defaults to 30.
|
109 |
+
allowed_tags (list, optional): Specific HTML tags to extract text from.
|
110 |
+
If None, uses a default set of content-rich tags.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
str: Extracted text content from the webpage
|
114 |
+
|
115 |
+
Raises:
|
116 |
+
ValueError: If URL cannot be fetched after maximum retries
|
117 |
+
requests.RequestException: For network-related errors
|
118 |
+
|
119 |
+
Examples:
|
120 |
+
>>> extractor = URLTextExtractor()
|
121 |
+
>>> text = extractor.extract_text_from_url('https://example.com')
|
122 |
+
>>> text = extractor.extract_text_from_url('https://example.com', preserve_sections=False)
|
123 |
+
"""
|
124 |
+
# Default allowed tags if not specified
|
125 |
+
if allowed_tags is None:
|
126 |
+
allowed_tags = [
|
127 |
+
"p",
|
128 |
+
"div",
|
129 |
+
"article",
|
130 |
+
"section",
|
131 |
+
"main",
|
132 |
+
"h1",
|
133 |
+
"h2",
|
134 |
+
"h3",
|
135 |
+
"h4",
|
136 |
+
"h5",
|
137 |
+
"h6",
|
138 |
+
]
|
139 |
+
|
140 |
+
# Validate URL
|
141 |
+
try:
|
142 |
+
parsed_url = urlparse(url)
|
143 |
+
if not all([parsed_url.scheme, parsed_url.netloc]):
|
144 |
+
# raise ValueError("Invalid URL format")
|
145 |
+
return None
|
146 |
+
except Exception as e:
|
147 |
+
self.logger.error(f"URL parsing error: {e}")
|
148 |
+
raise
|
149 |
+
|
150 |
+
for attempt in range(max_retries):
|
151 |
+
try:
|
152 |
+
# Randomly select a user agent
|
153 |
+
headers = {
|
154 |
+
"User-Agent": random.choice(self.USER_AGENTS),
|
155 |
+
"Accept-Language": "en-US,en;q=0.9",
|
156 |
+
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
|
157 |
+
}
|
158 |
+
|
159 |
+
# Send a GET request to the URL
|
160 |
+
response = requests.get(
|
161 |
+
url, headers=headers, timeout=10, allow_redirects=True
|
162 |
+
)
|
163 |
+
|
164 |
+
# Raise an exception for bad status codes
|
165 |
+
response.raise_for_status()
|
166 |
+
|
167 |
+
# Log successful fetch
|
168 |
+
self.logger.info(f"Successfully fetched URL: {url}")
|
169 |
+
|
170 |
+
# Parse the HTML content
|
171 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
172 |
+
|
173 |
+
# Remove unwanted elements
|
174 |
+
for script in soup(
|
175 |
+
["script", "style", "head", "header", "footer", "nav"]
|
176 |
+
):
|
177 |
+
script.decompose()
|
178 |
+
|
179 |
+
# Extract text with section preservation
|
180 |
+
if preserve_sections:
|
181 |
+
# Extract text from specified tags
|
182 |
+
sections = []
|
183 |
+
for tag in allowed_tags:
|
184 |
+
for element in soup.find_all(tag):
|
185 |
+
# Process element text, handling anchor tags
|
186 |
+
section_text = self._process_element_text(element)
|
187 |
+
|
188 |
+
# Only add sections meeting minimum length
|
189 |
+
if len(section_text) >= min_section_length:
|
190 |
+
sections.append(section_text)
|
191 |
+
|
192 |
+
# Join sections with newline
|
193 |
+
text = "\n".join(sections)
|
194 |
+
else:
|
195 |
+
# If not preserving sections, use modified text extraction
|
196 |
+
text = " ".join(
|
197 |
+
self._process_element_text(element)
|
198 |
+
for tag in allowed_tags
|
199 |
+
for element in soup.find_all(tag)
|
200 |
+
)
|
201 |
+
|
202 |
+
# Remove excessive whitespace and empty lines
|
203 |
+
text = "\n".join(
|
204 |
+
line.strip() for line in text.split("\n") if line.strip()
|
205 |
+
)
|
206 |
+
|
207 |
+
return text
|
208 |
+
|
209 |
+
except (requests.RequestException, ValueError) as e:
|
210 |
+
# Log error details
|
211 |
+
self.logger.warning(f"Attempt {attempt + 1} failed: {e}")
|
212 |
+
|
213 |
+
# If it's the last retry, raise the error
|
214 |
+
if attempt == max_retries - 1:
|
215 |
+
self.logger.error(
|
216 |
+
f"Failed to fetch URL after {max_retries} attempts"
|
217 |
+
)
|
218 |
+
raise ValueError(
|
219 |
+
f"Error fetching URL after {max_retries} attempts: {e}"
|
220 |
+
)
|
221 |
+
|
222 |
+
# Exponential backoff
|
223 |
+
wait_time = 2**attempt
|
224 |
+
self.logger.info(f"Waiting {wait_time} seconds before retry")
|
225 |
+
time.sleep(wait_time)
|
226 |
+
|
227 |
+
# Fallback (though this should never be reached due to the raise in the loop)
|
228 |
+
return None
|
229 |
+
|
230 |
+
|
231 |
+
def extract_text_from_pptx(file_path):
|
232 |
+
prs = Presentation(file_path)
|
233 |
+
text_content = []
|
234 |
+
|
235 |
+
for slide in prs.slides:
|
236 |
+
slide_text = []
|
237 |
+
for shape in slide.shapes:
|
238 |
+
if hasattr(shape, "text"):
|
239 |
+
slide_text.append(shape.text)
|
240 |
+
text_content.append("\n".join(slide_text))
|
241 |
+
|
242 |
+
return "\n\n".join(text_content)
|
243 |
+
|
244 |
+
|
245 |
+
def extract_text_from_ppt(file_path):
|
246 |
+
try:
|
247 |
+
print("file_path = ", file_path)
|
248 |
+
# Convert PPT to PPTX using unoconv
|
249 |
+
pptx_file_path = os.path.splitext(file_path)[0] + ".pptx"
|
250 |
+
subprocess.run(["unoconv", "-f", "pptx", file_path], check=True)
|
251 |
+
|
252 |
+
# Extract text from PPTX
|
253 |
+
presentation = Presentation(pptx_file_path)
|
254 |
+
text_content = []
|
255 |
+
|
256 |
+
for slide in presentation.slides:
|
257 |
+
slide_text = []
|
258 |
+
for shape in slide.shapes:
|
259 |
+
if hasattr(shape, "text"):
|
260 |
+
slide_text.append(shape.text)
|
261 |
+
text_content.append("\n".join(slide_text))
|
262 |
+
|
263 |
+
# Remove the converted PPTX file
|
264 |
+
os.remove(pptx_file_path)
|
265 |
+
|
266 |
+
out = "\n\n".join(text_content)
|
267 |
+
return out
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Error extracting text from PPT file: {e}")
|
270 |
+
return "Error extracting text from PPT file"
|
271 |
+
|
272 |
+
|
273 |
+
# def extract_text_from_ppt_or_pptx(file_path):
|
274 |
+
# if file_path.endswith(".pptx"):
|
275 |
+
# return extract_text_from_pptx(file_path)
|
276 |
+
# elif file_path.endswith(".ppt"):
|
277 |
+
# return extract_text_from_ppt(file_path)
|
278 |
+
# else:
|
279 |
+
# return "Unsupported file type. Please provide a .ppt or .pptx file."
|
280 |
+
|
281 |
+
|
282 |
+
def convert_pdf_to_image(file):
|
283 |
+
images = convert_from_path(file)
|
284 |
+
return images
|
285 |
+
|
286 |
+
|
287 |
+
def extract_text_from_pdf(file):
|
288 |
+
text = ""
|
289 |
+
with pdfplumber.open(file) as pdf:
|
290 |
+
for page in pdf.pages:
|
291 |
+
text += page.extract_text() + "\n"
|
292 |
+
return text
|
293 |
+
|
294 |
+
|
295 |
+
def extract_text_from_docx(file_path):
|
296 |
+
text = ""
|
297 |
+
doc = Document(file_path.name)
|
298 |
+
for paragraph in doc.paragraphs:
|
299 |
+
text += paragraph.text + "\n"
|
300 |
+
return text
|
301 |
+
|
302 |
+
|
303 |
+
def convert_doc_to_text(file_path):
|
304 |
+
try:
|
305 |
+
subprocess.run(
|
306 |
+
["unoconv", "--format", "txt", file_path],
|
307 |
+
capture_output=True,
|
308 |
+
text=True,
|
309 |
+
check=True,
|
310 |
+
)
|
311 |
+
txt_file_path = file_path.replace(".doc", ".txt")
|
312 |
+
with open(txt_file_path, "r") as f:
|
313 |
+
text = f.read()
|
314 |
+
text = text.lstrip("\ufeff")
|
315 |
+
os.remove(txt_file_path)
|
316 |
+
return text
|
317 |
+
except subprocess.CalledProcessError as e:
|
318 |
+
print(f"Error converting {file_path} to text: {e}")
|
319 |
+
return ""
|
320 |
+
|
321 |
+
|
322 |
+
# function that generates a random string
|
323 |
+
def generate_random_string(length=23):
|
324 |
+
characters = string.ascii_letters + string.digits # Includes letters and digits
|
325 |
+
random_string = "".join(random.choice(characters) for _ in range(length))
|
326 |
+
return random_string
|
327 |
+
|
328 |
+
|
329 |
+
# function that adds the necessary json fields
|
330 |
+
def handle_json_output(json_list: list):
|
331 |
+
n = len(json_list)
|
332 |
+
for i in range(n):
|
333 |
+
# not last element
|
334 |
+
random_string1 = generate_random_string()
|
335 |
+
random_string2 = generate_random_string()
|
336 |
+
element = json_list[i]
|
337 |
+
front = element["frontText"]
|
338 |
+
back = element["backText"]
|
339 |
+
element["frontHTML"] = (
|
340 |
+
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
341 |
+
f"<p>{front}</p></div>"
|
342 |
+
)
|
343 |
+
element["backHTML"] = (
|
344 |
+
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
345 |
+
f"<p>{back}</p></div>"
|
346 |
+
)
|
347 |
+
element["termType"] = "basic"
|
348 |
+
cloze_matches = re.findall(r"_{2,}", front)
|
349 |
+
# match only the first one, if there is multiple don't do anything
|
350 |
+
if (cloze_matches != []) & (len(cloze_matches) <= 2):
|
351 |
+
# It's a cloze type card
|
352 |
+
element["termType"] = "cloze"
|
353 |
+
|
354 |
+
# inject the back in a span format into the front
|
355 |
+
def replace_cloze(match):
|
356 |
+
return f'</p><p><span class="closure">{back}</span></p><p>'
|
357 |
+
|
358 |
+
front_html = re.sub(r"_{2,}", replace_cloze, front)
|
359 |
+
element["frontHTML"] = (
|
360 |
+
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
361 |
+
f"<p>{front_html}</p></div>"
|
362 |
+
)
|
363 |
+
|
364 |
+
def replace_underscores(match):
|
365 |
+
return f" {back} "
|
366 |
+
|
367 |
+
element["frontText"] = re.sub(r"_{2,}", replace_underscores, front)
|
368 |
+
element["backText"] = ""
|
369 |
+
|
370 |
+
element["backHTML"] = (
|
371 |
+
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
|
372 |
+
f"<p><br></p></div>"
|
373 |
+
)
|
374 |
+
|
375 |
+
return json_list
|
376 |
+
|
377 |
+
|
378 |
+
def sanitize_list_of_lists(text: str) -> Optional[List[List]]:
|
379 |
+
left = text.find("[")
|
380 |
+
right = text.rfind("]")
|
381 |
+
text = text[left : right + 1]
|
382 |
+
try:
|
383 |
+
# Safely evaluate the string to a Python object
|
384 |
+
list_of_lists = eval(text)
|
385 |
+
if isinstance(list_of_lists, list): # Ensure it's a list
|
386 |
+
out = []
|
387 |
+
try:
|
388 |
+
# parse list of lists
|
389 |
+
for front, back in list_of_lists:
|
390 |
+
out.append({"frontText": front, "backText": back})
|
391 |
+
return handle_json_output(out)
|
392 |
+
# errors
|
393 |
+
except Exception as e:
|
394 |
+
print(e)
|
395 |
+
# return anything that was already parsed
|
396 |
+
if out != []:
|
397 |
+
return handle_json_output(out)
|
398 |
+
# original schedma is not respected
|
399 |
+
else:
|
400 |
+
return None
|
401 |
+
else:
|
402 |
+
print("The evaluated object is not a list.")
|
403 |
+
return None
|
404 |
+
except Exception as e:
|
405 |
+
print(f"Error parsing the list of lists: {e}")
|
406 |
+
return None
|
407 |
+
|
408 |
+
|
409 |
+
extractor = URLTextExtractor()
|
410 |
+
|
411 |
+
|
412 |
+
def parse_url(url):
|
413 |
+
return extractor.extract_text_from_url(url)
|
requirements.txt
CHANGED
@@ -5,4 +5,11 @@ pdfplumber
|
|
5 |
python-docx
|
6 |
gradio
|
7 |
python-pptx
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
python-docx
|
6 |
gradio
|
7 |
python-pptx
|
8 |
+
numpy<2
|
9 |
+
torch>=2
|
10 |
+
spaces
|
11 |
+
transformers
|
12 |
+
loadimg
|
13 |
+
torchvision
|
14 |
+
pillow
|
15 |
+
scikit-image
|