from diffusers import StableDiffusionPipeline import torch file_name = "/blob/main/rem_3k.ckpt" model_url = "https://huggingface.co/waifu-research-department/Rem" + file_name pipeline = StableDiffusionPipeline.from_single_file( model_url, torch_dtype=torch.float16, ) import gradio as gr description=""" # running stable diffusion from a ckpt file ## NOTICE ⚠️: - this space does not work rn because it needs GPU, feel free to **clone this space** and set your own with GPU an meet your waifu **ヽ(≧□≦)ノ** if you do not have money (just like me **(┬┬﹏┬┬)** ) you can always : * **run the code in your PC** if you have a good GPU a good internet connection (to download the ai model only a 1 time thing) * **run the model in the cloud** (colab, and kaggle are good alternatives and they have a pretty good internet connection ) ### minimalistic code to run a ckpt model * enable GPU (click runtime then change runtime type) * install the following libraries ``` !pip install -q diffusers gradio omegaconf ``` * **restart your kernal** 👈 (click runtime then click restart session) * run the following code ```python from diffusers import StableDiffusionPipeline import torch pipeline = StableDiffusionPipeline.from_single_file( "https://huggingface.co/waifu-research-department/Rem/blob/main/rem_3k.ckpt", # put your model url here torch_dtype=torch.float16, ).to("cuda") postive_prompt = "anime girl prompt here" # 👈 change this negative_prompt = "3D" # 👈 things you hate here image = pipeline(postive_prompt,negative_prompt=negative_prompt).images[0] image # your image is saved in this PIL variable ``` """ try : pipeline.to("cuda") except: log = "no GPU available" def text2img(positive_prompt,negative_prompt): try : image = pipeline(positive_prompt,negative_prompt=negative_prompt).images[0] log = {"postive_prompt":positive_prompt,"negative_prompt":negative_prompt} except Exception as e: log = f"ERROR: {e}" image = None return log,image gr.Interface(text2img,["text","text"],["text","image"],examples=[["rem","3D"]],description=description).launch()