File size: 3,472 Bytes
003d203 0e6c023 aa16383 dcfda89 0e6c023 003d203 aa16383 dcfda89 aa16383 dcfda89 aa16383 dcfda89 5fb3d3c aa16383 dcfda89 30b17a2 aa16383 dcfda89 aa16383 dcfda89 aa16383 30b17a2 aa16383 e406805 9a3b780 aa16383 e7bef73 0e6c023 dcfda89 e406805 2ca2e3d 991bda2 2ca2e3d e406805 aa16383 2ca2e3d 1167bff aa16383 dcfda89 2ca2e3d dcfda89 9a38c25 6ba9354 30b17a2 dcfda89 aa16383 0e6c023 aa16383 94386db 0e6c023 003d203 0e6c023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")
def prepare_image_and_mask(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
):
image = load_img(image).convert("RGB")
# expand image (left,top,right,bottom)
background = ImageOps.expand(
image,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
mask = Image.new("RGB", image.size, "black")
mask = ImageOps.expand(
mask,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
return background, mask
def inpaint(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background, mask = prepare_image_and_mask(
image, padding_top, padding_bottom, padding_left, padding_right
)
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def rmbg(image, url):
if image is None:
image = url
image = load_img(image).convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
@spaces.GPU
def main(*args, progress=gr.Progress(track_tqdm=True)):
api_num = args[0]
args = args[1:]
if api_num == 1:
return rmbg(*args)
elif api_num == 2:
return inpaint(*args)
rmbg_tab = gr.Interface(
fn=main,
inputs=[gr.Number(1, visible=False), "image", "text"],
outputs=["image"],
api_name="rmbg",
examples=[["./assets/Inpainting mask.png", None]],
)
outpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(2, visible=False),
"image",
gr.Number(label="padding top"),
gr.Number(label="padding bottom"),
gr.Number(label="padding left"),
gr.Number(label="padding right"),
gr.Text(label="prompt"),
gr.Number(value=50, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="outpainting",
)
demo = gr.TabbedInterface(
[rmbg_tab, outpaint_tab],
["remove background", "outpainting"],
title="Utilities that require GPU",
)
demo.launch()
|