import spaces import os import re import gradio as gr import torch from transformers import AutoModelForCausalLM from transformers import TextIteratorStreamer from threading import Thread from PIL import Image model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B' # load model model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, multimodal_max_length=8192, trust_remote_code=True).to(device='cuda') text_tokenizer = model.get_text_tokenizer() visual_tokenizer = model.get_visual_tokenizer() streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True) image_placeholder = '' cur_dir = os.path.dirname(os.path.abspath(__file__)) @spaces.GPU def ovis_chat(message, history): try : image_input = Image.open(message["files"][0]).convert("RGB") except : image_input = None # preprocess inputs conversations = [] response = "" text_input = message["text"] for msg in history: if msg["role"] == "user" and "size" not in msg.keys(): conversations.append({ "from": "human", "value": msg["content"] }) elif msg["role"] == "assistant": conversations.append({ "from": "gpt", "value": msg["content"] }) text_input = text_input.replace(image_placeholder, '') conversations.append({ "from": "human", "value": text_input }) if image_input is not None: conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"] prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input]) attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) input_ids = input_ids.unsqueeze(0).to(device=model.device) attention_mask = attention_mask.unsqueeze(0).to(device=model.device) if image_input is None: pixel_values = [None] else: pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] with torch.inference_mode(): gen_kwargs = dict( max_new_tokens=512, do_sample=False, top_p=None, top_k=None, temperature=None, repetition_penalty=None, eos_token_id=model.generation_config.eos_token_id, pad_token_id=text_tokenizer.pad_token_id, use_cache=True ) response = "" thread = Thread(target=model.generate, kwargs={"inputs": input_ids, "pixel_values": pixel_values, "attention_mask": attention_mask, "streamer": streamer, **gen_kwargs}) thread.start() for new_text in streamer: response += new_text yield response thread.join() def clear_chat(): return [], None, "" with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file: svg_content = svg_file.read() font_size = "2.5em" svg_content = re.sub(r'(]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content) html = f"""

{svg_content} {model_name.split('/')[-1]}

Ovis has been open-sourced on 😊 Huggingface and 🌟 GitHub. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.
""" latex_delimiters_set = [{ "left": "\\(", "right": "\\)", "display": False }, { "left": "\\begin{equation}", "right": "\\end{equation}", "display": True }, { "left": "\\begin{align}", "right": "\\end{align}", "display": True }, { "left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True }, { "left": "\\begin{gather}", "right": "\\end{gather}", "display": True }, { "left": "\\begin{CD}", "right": "\\end{CD}", "display": True }, { "left": "\\[", "right": "\\]", "display": True }] # send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) # submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) # clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input]) demo = gr.ChatInterface(fn=ovis_chat, type="messages", textbox=gr.MultimodalTextbox(),multimodal=True) demo.launch(debug=True)