|
from lib.renderer.mesh import load_fit_body |
|
from lib.dataset.hoppeMesh import HoppeMesh |
|
from lib.dataset.body_model import TetraSMPLModel |
|
from lib.common.render import Render |
|
from lib.dataset.mesh_util import SMPLX, projection, cal_sdf_batch, get_visibility |
|
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis |
|
from termcolor import colored |
|
import os.path as osp |
|
import numpy as np |
|
from PIL import Image |
|
import random |
|
import os |
|
import trimesh |
|
import torch |
|
from kaolin.ops.mesh import check_sign |
|
import torchvision.transforms as transforms |
|
from huggingface_hub import hf_hub_download, cached_download |
|
|
|
|
|
class PIFuDataset(): |
|
def __init__(self, cfg, split='train', vis=False): |
|
|
|
self.split = split |
|
self.root = cfg.root |
|
self.bsize = cfg.batch_size |
|
self.overfit = cfg.overfit |
|
|
|
|
|
self.vis = vis |
|
|
|
self.opt = cfg.dataset |
|
self.datasets = self.opt.types |
|
self.input_size = self.opt.input_size |
|
self.scales = self.opt.scales |
|
self.workers = cfg.num_threads |
|
self.prior_type = cfg.net.prior_type |
|
|
|
self.noise_type = self.opt.noise_type |
|
self.noise_scale = self.opt.noise_scale |
|
|
|
noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21] |
|
|
|
self.noise_smpl_idx = [] |
|
self.noise_smplx_idx = [] |
|
|
|
for idx in noise_joints: |
|
self.noise_smpl_idx.append(idx * 3) |
|
self.noise_smpl_idx.append(idx * 3 + 1) |
|
self.noise_smpl_idx.append(idx * 3 + 2) |
|
|
|
self.noise_smplx_idx.append((idx-1) * 3) |
|
self.noise_smplx_idx.append((idx-1) * 3 + 1) |
|
self.noise_smplx_idx.append((idx-1) * 3 + 2) |
|
|
|
self.use_sdf = cfg.sdf |
|
self.sdf_clip = cfg.sdf_clip |
|
|
|
|
|
self.in_geo = [item[0] for item in cfg.net.in_geo] |
|
self.in_nml = [item[0] for item in cfg.net.in_nml] |
|
|
|
self.in_geo_dim = [item[1] for item in cfg.net.in_geo] |
|
self.in_nml_dim = [item[1] for item in cfg.net.in_nml] |
|
|
|
self.in_total = self.in_geo + self.in_nml |
|
self.in_total_dim = self.in_geo_dim + self.in_nml_dim |
|
|
|
if self.split == 'train': |
|
self.rotations = np.arange( |
|
0, 360, 360 / self.opt.rotation_num).astype(np.int32) |
|
else: |
|
self.rotations = range(0, 360, 120) |
|
|
|
self.datasets_dict = {} |
|
|
|
for dataset_id, dataset in enumerate(self.datasets): |
|
|
|
mesh_dir = None |
|
smplx_dir = None |
|
|
|
dataset_dir = osp.join(self.root, dataset) |
|
|
|
if dataset in ['thuman2']: |
|
mesh_dir = osp.join(dataset_dir, "scans") |
|
smplx_dir = osp.join(dataset_dir, "fits") |
|
smpl_dir = osp.join(dataset_dir, "smpl") |
|
|
|
self.datasets_dict[dataset] = { |
|
"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str), |
|
"smplx_dir": smplx_dir, |
|
"smpl_dir": smpl_dir, |
|
"mesh_dir": mesh_dir, |
|
"scale": self.scales[dataset_id] |
|
} |
|
|
|
self.subject_list = self.get_subject_list(split) |
|
self.smplx = SMPLX() |
|
|
|
|
|
self.image_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
|
|
|
|
self.mask_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.0, ), (1.0, )) |
|
]) |
|
|
|
self.device = torch.device(f"cuda:{cfg.gpus[0]}") |
|
self.render = Render(size=512, device=self.device) |
|
|
|
def render_normal(self, verts, faces): |
|
|
|
|
|
self.render.load_meshes(verts, faces) |
|
return self.render.get_rgb_image() |
|
|
|
def get_subject_list(self, split): |
|
|
|
subject_list = [] |
|
|
|
for dataset in self.datasets: |
|
|
|
split_txt = osp.join(self.root, dataset, f'{split}.txt') |
|
|
|
if osp.exists(split_txt): |
|
print(f"load from {split_txt}") |
|
subject_list += np.loadtxt(split_txt, dtype=str).tolist() |
|
else: |
|
full_txt = osp.join(self.root, dataset, 'all.txt') |
|
print(f"split {full_txt} into train/val/test") |
|
|
|
full_lst = np.loadtxt(full_txt, dtype=str) |
|
full_lst = [dataset+"/"+item for item in full_lst] |
|
[train_lst, test_lst, val_lst] = np.split( |
|
full_lst, [500, 500+5, ]) |
|
|
|
np.savetxt(full_txt.replace( |
|
"all", "train"), train_lst, fmt="%s") |
|
np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s") |
|
np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s") |
|
|
|
print(f"load from {split_txt}") |
|
subject_list += np.loadtxt(split_txt, dtype=str).tolist() |
|
|
|
if self.split != 'test': |
|
subject_list += subject_list[:self.bsize - |
|
len(subject_list) % self.bsize] |
|
print(colored(f"total: {len(subject_list)}", "yellow")) |
|
random.shuffle(subject_list) |
|
|
|
|
|
return subject_list |
|
|
|
def __len__(self): |
|
return len(self.subject_list) * len(self.rotations) |
|
|
|
def __getitem__(self, index): |
|
|
|
|
|
if self.overfit: |
|
index = 0 |
|
|
|
rid = index % len(self.rotations) |
|
mid = index // len(self.rotations) |
|
|
|
rotation = self.rotations[rid] |
|
subject = self.subject_list[mid].split("/")[1] |
|
dataset = self.subject_list[mid].split("/")[0] |
|
render_folder = "/".join([dataset + |
|
f"_{self.opt.rotation_num}views", subject]) |
|
|
|
|
|
data_dict = { |
|
'dataset': dataset, |
|
'subject': subject, |
|
'rotation': rotation, |
|
'scale': self.datasets_dict[dataset]["scale"], |
|
'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"), |
|
'smplx_path': osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}/smplx_param.pkl"), |
|
'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"), |
|
'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'), |
|
'vis_path': osp.join(self.root, render_folder, 'vis', f'{rotation:03d}.pt'), |
|
'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png') |
|
} |
|
|
|
|
|
data_dict.update(self.load_calib(data_dict)) |
|
|
|
|
|
for name, channel in zip(self.in_total, self.in_total_dim): |
|
|
|
if f'{name}_path' not in data_dict.keys(): |
|
data_dict.update({ |
|
f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png') |
|
}) |
|
|
|
|
|
data_dict.update({ |
|
name: self.imagepath2tensor( |
|
data_dict[f'{name}_path'], channel, inv=False) |
|
}) |
|
|
|
data_dict.update(self.load_mesh(data_dict)) |
|
data_dict.update(self.get_sampling_geo( |
|
data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf)) |
|
data_dict.update(self.load_smpl(data_dict, self.vis)) |
|
|
|
if self.prior_type == 'pamir': |
|
data_dict.update(self.load_smpl_voxel(data_dict)) |
|
|
|
if (self.split != 'test') and (not self.vis): |
|
|
|
del data_dict['verts'] |
|
del data_dict['faces'] |
|
|
|
if not self.vis: |
|
del data_dict['mesh'] |
|
|
|
path_keys = [ |
|
key for key in data_dict.keys() if '_path' in key or '_dir' in key |
|
] |
|
for key in path_keys: |
|
del data_dict[key] |
|
|
|
return data_dict |
|
|
|
def imagepath2tensor(self, path, channel=3, inv=False): |
|
|
|
rgba = Image.open(path).convert('RGBA') |
|
mask = rgba.split()[-1] |
|
image = rgba.convert('RGB') |
|
image = self.image_to_tensor(image) |
|
mask = self.mask_to_tensor(mask) |
|
image = (image * mask)[:channel] |
|
|
|
return (image * (0.5 - inv) * 2.0).float() |
|
|
|
def load_calib(self, data_dict): |
|
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float) |
|
extrinsic = calib_data[:4, :4] |
|
intrinsic = calib_data[4:8, :4] |
|
calib_mat = np.matmul(intrinsic, extrinsic) |
|
calib_mat = torch.from_numpy(calib_mat).float() |
|
return {'calib': calib_mat} |
|
|
|
def load_mesh(self, data_dict): |
|
mesh_path = data_dict['mesh_path'] |
|
scale = data_dict['scale'] |
|
|
|
mesh_ori = trimesh.load(mesh_path, |
|
skip_materials=True, |
|
process=False, |
|
maintain_order=True) |
|
verts = mesh_ori.vertices * scale |
|
faces = mesh_ori.faces |
|
|
|
vert_normals = np.array(mesh_ori.vertex_normals) |
|
face_normals = np.array(mesh_ori.face_normals) |
|
|
|
mesh = HoppeMesh(verts, faces, vert_normals, face_normals) |
|
|
|
return { |
|
'mesh': mesh, |
|
'verts': torch.as_tensor(mesh.verts).float(), |
|
'faces': torch.as_tensor(mesh.faces).long() |
|
} |
|
|
|
def add_noise(self, |
|
beta_num, |
|
smpl_pose, |
|
smpl_betas, |
|
noise_type, |
|
noise_scale, |
|
type, |
|
hashcode): |
|
|
|
np.random.seed(hashcode) |
|
|
|
if type == 'smplx': |
|
noise_idx = self.noise_smplx_idx |
|
else: |
|
noise_idx = self.noise_smpl_idx |
|
|
|
if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0: |
|
smpl_betas += (np.random.rand(beta_num) - |
|
0.5) * 2.0 * noise_scale[noise_type.index("beta")] |
|
smpl_betas = smpl_betas.astype(np.float32) |
|
|
|
if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0: |
|
smpl_pose[noise_idx] += ( |
|
np.random.rand(len(noise_idx)) - |
|
0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")] |
|
smpl_pose = smpl_pose.astype(np.float32) |
|
if type == 'smplx': |
|
return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...]) |
|
else: |
|
return smpl_pose, smpl_betas |
|
|
|
def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None): |
|
|
|
dataset = data_dict['dataset'] |
|
smplx_dict = {} |
|
|
|
smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True) |
|
smplx_pose = smplx_param["body_pose"] |
|
smplx_betas = smplx_param["betas"] |
|
smplx_pose, smplx_betas = self.add_noise( |
|
smplx_betas.shape[1], |
|
smplx_pose[0], |
|
smplx_betas[0], |
|
noise_type, |
|
noise_scale, |
|
type='smplx', |
|
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8)) |
|
|
|
smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_path'], |
|
scale=self.datasets_dict[dataset]['scale'], |
|
smpl_type='smplx', |
|
smpl_gender='male', |
|
noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose)) |
|
|
|
smplx_dict.update({"type": "smplx", |
|
"gender": 'male', |
|
"body_pose": torch.as_tensor(smplx_pose), |
|
"betas": torch.as_tensor(smplx_betas)}) |
|
|
|
return smplx_out.vertices, smplx_dict |
|
|
|
def compute_voxel_verts(self, |
|
data_dict, |
|
noise_type=None, |
|
noise_scale=None): |
|
|
|
smpl_param = np.load(data_dict['smpl_path'], allow_pickle=True) |
|
smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True) |
|
|
|
smpl_pose = rotation_matrix_to_angle_axis( |
|
torch.as_tensor(smpl_param['full_pose'][0])).numpy() |
|
smpl_betas = smpl_param["betas"] |
|
|
|
smpl_path = cached_download(osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl"), use_auth_token=os.environ['ICON']) |
|
tetra_path = cached_download(osp.join(self.smplx.tedra_dir, |
|
"tetra_male_adult_smpl.npz"), use_auth_token=os.environ['ICON']) |
|
|
|
smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult') |
|
|
|
smpl_pose, smpl_betas = self.add_noise( |
|
smpl_model.beta_shape[0], |
|
smpl_pose.flatten(), |
|
smpl_betas[0], |
|
noise_type, |
|
noise_scale, |
|
type='smpl', |
|
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8)) |
|
|
|
smpl_model.set_params(pose=smpl_pose.reshape(-1, 3), |
|
beta=smpl_betas, |
|
trans=smpl_param["transl"]) |
|
|
|
verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added], |
|
axis=0) * smplx_param["scale"] + smplx_param["translation"] |
|
) * self.datasets_dict[data_dict['dataset']]['scale'] |
|
faces = np.loadtxt(cached_download(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"), use_auth_token=os.environ['ICON']), |
|
dtype=np.int32) - 1 |
|
|
|
pad_v_num = int(8000 - verts.shape[0]) |
|
pad_f_num = int(25100 - faces.shape[0]) |
|
|
|
verts = np.pad(verts, ((0, pad_v_num), (0, 0)), |
|
mode='constant', |
|
constant_values=0.0).astype(np.float32) |
|
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), |
|
mode='constant', |
|
constant_values=0.0).astype(np.int32) |
|
|
|
|
|
return verts, faces, pad_v_num, pad_f_num |
|
|
|
def load_smpl(self, data_dict, vis=False): |
|
|
|
smplx_verts, smplx_dict = self.compute_smpl_verts( |
|
data_dict, self.noise_type, |
|
self.noise_scale) |
|
|
|
smplx_verts = projection(smplx_verts, data_dict['calib']).float() |
|
smplx_faces = torch.as_tensor(self.smplx.faces).long() |
|
smplx_vis = torch.load(data_dict['vis_path']).float() |
|
smplx_cmap = torch.as_tensor( |
|
np.load(self.smplx.cmap_vert_path)).float() |
|
|
|
|
|
query_points = projection(data_dict['samples_geo'], |
|
data_dict['calib']).float() |
|
|
|
pts_signs = 2.0 * (check_sign(smplx_verts.unsqueeze(0), |
|
smplx_faces, |
|
query_points.unsqueeze(0)).float() - 0.5).squeeze(0) |
|
|
|
return_dict = { |
|
'smpl_verts': smplx_verts, |
|
'smpl_faces': smplx_faces, |
|
'smpl_vis': smplx_vis, |
|
'smpl_cmap': smplx_cmap, |
|
'pts_signs': pts_signs |
|
} |
|
if smplx_dict is not None: |
|
return_dict.update(smplx_dict) |
|
|
|
if vis: |
|
|
|
(xy, z) = torch.as_tensor(smplx_verts).to( |
|
self.device).split([2, 1], dim=1) |
|
smplx_vis = get_visibility(xy, z, torch.as_tensor( |
|
smplx_faces).to(self.device).long()) |
|
|
|
T_normal_F, T_normal_B = self.render_normal( |
|
(smplx_verts*torch.tensor([1.0, -1.0, 1.0])).to(self.device), |
|
smplx_faces.to(self.device)) |
|
|
|
return_dict.update({"T_normal_F": T_normal_F.squeeze(0), |
|
"T_normal_B": T_normal_B.squeeze(0)}) |
|
query_points = projection(data_dict['samples_geo'], |
|
data_dict['calib']).float() |
|
|
|
smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch( |
|
smplx_verts.unsqueeze(0).to(self.device), |
|
smplx_faces.unsqueeze(0).to(self.device), |
|
smplx_cmap.unsqueeze(0).to(self.device), |
|
smplx_vis.unsqueeze(0).to(self.device), |
|
query_points.unsqueeze(0).contiguous().to(self.device)) |
|
|
|
return_dict.update({ |
|
'smpl_feat': |
|
torch.cat( |
|
(smplx_sdf[0].detach().cpu(), |
|
smplx_cmap[0].detach().cpu(), |
|
smplx_norm[0].detach().cpu(), |
|
smplx_vis[0].detach().cpu()), |
|
dim=1) |
|
}) |
|
|
|
return return_dict |
|
|
|
def load_smpl_voxel(self, data_dict): |
|
|
|
smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts( |
|
data_dict, self.noise_type, |
|
self.noise_scale) |
|
smpl_verts = projection(smpl_verts, data_dict['calib']) |
|
|
|
smpl_verts *= 0.5 |
|
|
|
return { |
|
'voxel_verts': smpl_verts, |
|
'voxel_faces': smpl_faces, |
|
'pad_v_num': pad_v_num, |
|
'pad_f_num': pad_f_num |
|
} |
|
|
|
def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False): |
|
|
|
mesh = data_dict['mesh'] |
|
calib = data_dict['calib'] |
|
|
|
|
|
n_samples_surface = 4 * self.opt.num_sample_geo |
|
vert_ids = np.arange(mesh.verts.shape[0]) |
|
thickness_sample_ratio = np.ones_like(vert_ids).astype(np.float32) |
|
|
|
thickness_sample_ratio /= thickness_sample_ratio.sum() |
|
|
|
samples_surface_ids = np.random.choice(vert_ids, |
|
n_samples_surface, |
|
replace=True, |
|
p=thickness_sample_ratio) |
|
|
|
samples_normal_ids = np.random.choice(vert_ids, |
|
self.opt.num_sample_geo // 2, |
|
replace=False, |
|
p=thickness_sample_ratio) |
|
|
|
surf_samples = mesh.verts[samples_normal_ids, :] |
|
surf_normals = mesh.vert_normals[samples_normal_ids, :] |
|
|
|
samples_surface = mesh.verts[samples_surface_ids, :] |
|
|
|
|
|
offset = np.random.normal(scale=self.opt.sigma_geo, |
|
size=(n_samples_surface, 1)) |
|
samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset |
|
|
|
|
|
calib_inv = np.linalg.inv(calib) |
|
n_samples_space = self.opt.num_sample_geo // 4 |
|
samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0 |
|
samples_space = projection(samples_space_img, calib_inv) |
|
|
|
|
|
if self.opt.zray_type and not is_valid: |
|
n_samples_rayz = self.opt.ray_sample_num |
|
samples_surface_cube = projection(samples_surface, calib) |
|
samples_surface_cube_repeat = np.repeat(samples_surface_cube, |
|
n_samples_rayz, |
|
axis=0) |
|
|
|
thickness_repeat = np.repeat(0.5 * |
|
np.ones_like(samples_surface_ids), |
|
n_samples_rayz, |
|
axis=0) |
|
|
|
noise_repeat = np.random.normal(scale=0.40, |
|
size=(n_samples_surface * |
|
n_samples_rayz, )) |
|
samples_surface_cube_repeat[:, |
|
-1] += thickness_repeat * noise_repeat |
|
samples_surface_rayz = projection(samples_surface_cube_repeat, |
|
calib_inv) |
|
|
|
samples = np.concatenate( |
|
[samples_surface, samples_space, samples_surface_rayz], 0) |
|
else: |
|
samples = np.concatenate([samples_surface, samples_space], 0) |
|
|
|
np.random.shuffle(samples) |
|
|
|
|
|
if is_sdf: |
|
sdfs = mesh.get_sdf(samples) |
|
inside_samples = samples[sdfs < 0] |
|
outside_samples = samples[sdfs >= 0] |
|
|
|
inside_sdfs = sdfs[sdfs < 0] |
|
outside_sdfs = sdfs[sdfs >= 0] |
|
else: |
|
inside = mesh.contains(samples) |
|
inside_samples = samples[inside >= 0.5] |
|
outside_samples = samples[inside < 0.5] |
|
|
|
nin = inside_samples.shape[0] |
|
|
|
if nin > self.opt.num_sample_geo // 2: |
|
inside_samples = inside_samples[:self.opt.num_sample_geo // 2] |
|
outside_samples = outside_samples[:self.opt.num_sample_geo // 2] |
|
if is_sdf: |
|
inside_sdfs = inside_sdfs[:self.opt.num_sample_geo // 2] |
|
outside_sdfs = outside_sdfs[:self.opt.num_sample_geo // 2] |
|
else: |
|
outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)] |
|
if is_sdf: |
|
outside_sdfs = outside_sdfs[:(self.opt.num_sample_geo - nin)] |
|
|
|
if is_sdf: |
|
samples = np.concatenate( |
|
[inside_samples, outside_samples, surf_samples], 0) |
|
|
|
labels = np.concatenate([ |
|
inside_sdfs, outside_sdfs, 0.0 * np.ones(surf_samples.shape[0]) |
|
]) |
|
|
|
normals = np.zeros_like(samples) |
|
normals[-self.opt.num_sample_geo // 2:, :] = surf_normals |
|
|
|
|
|
|
|
|
|
|
|
labels = -labels.clip(min=-self.sdf_clip, max=self.sdf_clip) |
|
labels += self.sdf_clip |
|
labels /= (self.sdf_clip * 2) |
|
|
|
else: |
|
samples = np.concatenate([inside_samples, outside_samples]) |
|
labels = np.concatenate([ |
|
np.ones(inside_samples.shape[0]), |
|
np.zeros(outside_samples.shape[0]) |
|
]) |
|
|
|
normals = np.zeros_like(samples) |
|
|
|
samples = torch.from_numpy(samples).float() |
|
labels = torch.from_numpy(labels).float() |
|
normals = torch.from_numpy(normals).float() |
|
|
|
return {'samples_geo': samples, 'labels_geo': labels} |