# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import math import torch import torch.nn as nn from functools import partial from networks.timm_vit import VisionTransformer, _cfg from timm.models.registry import register_model from timm.models.layers import trunc_normal_ __all__ = [ 'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224', 'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224', 'deit_base_distilled_patch16_224', 'deit_base_patch16_384', 'deit_base_distilled_patch16_384', ] class DistilledVisionTransformer(VisionTransformer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim)) self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() trunc_normal_(self.dist_token, std=.02) trunc_normal_(self.pos_embed, std=.02) self.head_dist.apply(self._init_weights) def forward_features(self, x): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add the dist_token B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0], x[:, 1] def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) if self.training: return x, x_dist else: # during inference, return the average of both classifier predictions return (x + x_dist) / 2 def interpolate_pos_encoding(self, x, pos_embed): """Interpolate the learnable positional encoding to match the number of patches. x: B x (1 + 1 + N patches) x dim_embedding pos_embed: B x (1 + 1 + N patches) x dim_embedding return interpolated positional embedding """ npatch = x.shape[1] - 2 # (H // patch_size * W // patch_size) N = pos_embed.shape[1] - 2 # 784 (= 28 x 28) if npatch == N: return pos_embed class_emb, distil_token, pos_embed = pos_embed[:, 0], pos_embed[:, 1], pos_embed[:, 2:] # a learnable CLS token, learnable position embeddings dim = x.shape[-1] # dimension of embeddings pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 scale_factor=math.sqrt(npatch / N) + 1e-5, # noel: this can be a float, but the output shape will be integer. recompute_scale_factor=True, mode='bicubic' ) # print("pos_embed", pos_embed.shape, npatch, N, math.sqrt(npatch/N), math.sqrt(npatch/N) * int(math.sqrt(N))) # exit(12) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) pos_embed = torch.cat((class_emb.unsqueeze(0), distil_token.unsqueeze(0), pos_embed), dim=1) return pos_embed def get_tokens( self, x, layers: list, patch_tokens: bool = False, norm: bool = True, input_tokens: bool = False, post_pe: bool = False ): """Return intermediate tokens.""" list_tokens: list = [] B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) if input_tokens: list_tokens.append(x) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed if post_pe: list_tokens.append(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks): x = blk(x) # B x # patches x dim if layers is None or i in layers: list_tokens.append(self.norm(x) if norm else x) tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim if not patch_tokens: return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim else: return torch.cat((tokens[:, :, 0, :].unsqueeze(dim=2), tokens[:, :, 2:, :]), dim=2) # exclude distil token. @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_distilled_patch16_224(pretrained=False, **kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_224(pretrained=False, **kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_384(pretrained=False, **kwargs): model = DistilledVisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model