File size: 4,260 Bytes
39ee507
 
 
 
 
 
ffef866
39ee507
 
 
 
 
 
 
 
 
 
 
cb30e70
 
 
39ee507
 
 
 
 
 
 
 
 
cb30e70
 
 
39ee507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ee507
 
 
 
 
 
 
6c5b73a
 
39ee507
ffef866
cb30e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import glob
from itertools import groupby

import cv2
import numpy as np
import gradio as gr
import tensorflow as tf


def get_sample_images():
    list_ = glob.glob(os.path.join(os.path.dirname(__file__), 'samples/*.jpg'))
    return [[i] for i in list_]


def inference(image):
    # load model
    demo = TFliteDemo(os.path.join(os.path.dirname(__file__), 'model.tflite'))
    # check image is not None
    if image is None:
        return 'None', 'None'
    # load image
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = center_fit(image, 128, 64, top_left=True)
    image = np.reshape(image, (1, *image.shape, 1)).astype(np.uint8)
    # inference
    pred = demo.inference(image)
    # decode
    dict = load_dict(os.path.join(os.path.dirname(__file__), 'label.names'))
    res = decode_label(pred, dict)
    # get confidence
    confidence = get_confidence(pred)
    return res, confidence


class TFliteDemo:
    def __init__(self, model_path):
        self.interpreter = tf.lite.Interpreter(model_path=model_path)
        self.interpreter.allocate_tensors()
        self.input_details = self.interpreter.get_input_details()
        self.output_details = self.interpreter.get_output_details()
    
    def inference(self, x):
        self.interpreter.set_tensor(self.input_details[0]['index'], x)
        self.interpreter.invoke()
        return self.interpreter.get_tensor(self.output_details[0]['index'])


def center_fit(img, w, h, inter=cv2.INTER_NEAREST, top_left=True):
    # get img shape
    img_h, img_w = img.shape[:2]
    # get ratio
    ratio = min(w / img_w, h / img_h)

    if len(img.shape) == 3:
        inter = cv2.INTER_AREA
    # resize img
    img = cv2.resize(img, (int(img_w * ratio), int(img_h * ratio)), interpolation=inter)
    # get new img shape
    img_h, img_w = img.shape[:2]
    # get start point
    start_w = (w - img_w) // 2
    start_h = (h - img_h) // 2

    if top_left:
        start_w = 0
        start_h = 0

    if len(img.shape) == 2:
        # create new img
        new_img = np.zeros((h, w), dtype=np.uint8)
        new_img[start_h:start_h+img_h, start_w:start_w+img_w] = img
    else:
        new_img = np.zeros((h, w, 3), dtype=np.uint8)
        new_img[start_h:start_h+img_h, start_w:start_w+img_w, :] = img

    return new_img


def load_dict(dict_path='label.names'):
    with open(dict_path, 'r', encoding='utf-8') as f:
        dict = f.read().splitlines()
    dict = {i: dict[i] for i in range(len(dict))}
    return dict


def get_confidence(mat) -> float:
    # mat is the output of model
    # get char indices along best path
    best_path_indices = np.argmax(mat[0], axis=-1)
    confidence = np.max(mat[0], axis=-1)
    blank_idx = mat.shape[-1] - 1
    avg_confidence = []
    for idx, conf in zip(best_path_indices, confidence):
        if idx != blank_idx:
            avg_confidence.append(conf)
    conf = np.mean(avg_confidence) / 255.0
    # keep 4 decimal places
    return "{:.4f}".format(conf)


def decode_label(mat, chars) -> str:
    # mat is the output of model
    # get char indices along best path
    best_path_indices = np.argmax(mat[0], axis=-1)
    # collapse best path (using itertools.groupby), map to chars, join char list to string
    best_chars_collapsed = [chars[k] for k, _ in groupby(best_path_indices) if k != len(chars)]
    res = ''.join(best_chars_collapsed)
    # remove space and '_'
    res = res.replace(' ', '').replace('_', '')
    return res


if __name__ == '__main__':
    _TITLE = '''South Korean License Plate Recognition'''
    _DESCRIPTION = '''
    <div>
    <p style="text-align: center; font-size: 1.3em">This is a demo of South Korean License Plate Recognition.
    <a style="display:inline-block; margin-left: .5em" href='https://github.com/noahzhy/KR_LPR_TF/'><img src='https://img.shields.io/github/stars/noahzhy/KR_LPR_TF?style=social' /></a>
    </p>
    </div>
    '''
    interface = gr.Interface(
        fn=inference,
        inputs="image",
        outputs=[
            gr.Textbox(label="Plate Number", type="text"),
            gr.Textbox(label="Confidence", type="text"),
        ],
        title=_TITLE,
        description=_DESCRIPTION,
        examples=get_sample_images(),
    )
    interface.launch()