Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- LegoDataset.py +57 -0
- mask_rcnn_lego.pth +3 -0
- requirements.txt +5 -0
LegoDataset.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from pycocotools.coco import COCO
|
6 |
+
import torchvision.transforms as T
|
7 |
+
|
8 |
+
|
9 |
+
class LegoDataset(torch.utils.data.Dataset):
|
10 |
+
def __init__(self, root, annFile, transforms=None):
|
11 |
+
self.root = root
|
12 |
+
self.coco = COCO(annFile)
|
13 |
+
self.ids = list(self.coco.imgs.keys())
|
14 |
+
self.transforms = transforms or T.Compose([T.ToTensor()])
|
15 |
+
|
16 |
+
def __getitem__(self, index):
|
17 |
+
img_id = self.ids[index]
|
18 |
+
img_info = self.coco.loadImgs(img_id)[0]
|
19 |
+
path = img_info["file_name"]
|
20 |
+
img = Image.open(os.path.join(self.root, path)).convert("RGB")
|
21 |
+
|
22 |
+
ann_ids = self.coco.getAnnIds(imgIds=img_id)
|
23 |
+
annotations = self.coco.loadAnns(ann_ids)
|
24 |
+
|
25 |
+
boxes = []
|
26 |
+
labels = []
|
27 |
+
masks = [] # Dummy masks
|
28 |
+
|
29 |
+
for ann in annotations:
|
30 |
+
xmin, ymin, width, height = ann["bbox"]
|
31 |
+
boxes.append([xmin, ymin, xmin + width, ymin + height])
|
32 |
+
labels.append(1) # 'lego' is the only class, labeled as 1
|
33 |
+
|
34 |
+
# Dummy mask for Mask R-CNN, filled with zeros
|
35 |
+
dummy_mask = np.zeros(
|
36 |
+
(img_info["height"], img_info["width"]), dtype=np.uint8
|
37 |
+
)
|
38 |
+
masks.append(dummy_mask)
|
39 |
+
|
40 |
+
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
41 |
+
labels = torch.as_tensor(labels, dtype=torch.int64)
|
42 |
+
masks = torch.as_tensor(np.array(masks), dtype=torch.uint8)
|
43 |
+
|
44 |
+
target = {
|
45 |
+
"boxes": boxes,
|
46 |
+
"labels": labels,
|
47 |
+
"masks": masks,
|
48 |
+
"image_id": torch.tensor([img_id]),
|
49 |
+
}
|
50 |
+
|
51 |
+
if self.transforms:
|
52 |
+
img = self.transforms(img)
|
53 |
+
|
54 |
+
return img, target
|
55 |
+
|
56 |
+
def __len__(self):
|
57 |
+
return len(self.ids)
|
mask_rcnn_lego.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6a79607f463a5ba13c4ae555a05ffb44383efc2326815d88a2cd0a2f78f098e
|
3 |
+
size 176222925
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|
4 |
+
pillow
|
5 |
+
requests
|