Upload trial_insert.py
Browse files- src/trial_insert.py +101 -0
src/trial_insert.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def insert_person_V2(
|
6 |
+
left_image_path, right_image_path, person_image_path, depth="medium"
|
7 |
+
):
|
8 |
+
# Load left and right stereoscopic images
|
9 |
+
left_image = cv2.imread(left_image_path)
|
10 |
+
right_image = cv2.imread(right_image_path)
|
11 |
+
|
12 |
+
# Load the segmented person image with alpha channel (transparency)
|
13 |
+
person = cv2.imread(person_image_path, cv2.IMREAD_UNCHANGED)
|
14 |
+
|
15 |
+
# Define scaling and disparity values for each depth level
|
16 |
+
depth_settings = {
|
17 |
+
"close": {"scale": 1.2, "disparity": 15},
|
18 |
+
"medium": {"scale": 1.0, "disparity": 10},
|
19 |
+
"far": {"scale": 0.7, "disparity": 5},
|
20 |
+
}
|
21 |
+
scale_factor = depth_settings[depth]["scale"]
|
22 |
+
disparity = depth_settings[depth]["disparity"]
|
23 |
+
|
24 |
+
# Resize person image according to the scale factor
|
25 |
+
person_resized = cv2.resize(
|
26 |
+
person, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_AREA
|
27 |
+
)
|
28 |
+
(ph, pw) = person_resized.shape[:2]
|
29 |
+
|
30 |
+
# Extract color and alpha channels from person image
|
31 |
+
person_rgb = person_resized[:, :, :3]
|
32 |
+
person_alpha = person_resized[:, :, 3] / 255.0 # Normalize alpha channel to [0, 1]
|
33 |
+
|
34 |
+
# Match brightness and contrast of the person to the background
|
35 |
+
person_rgb = match_brightness_contrast(left_image, person_rgb, person_alpha)
|
36 |
+
|
37 |
+
# Color match person to the background
|
38 |
+
person_rgb = match_color_tone(left_image, person_rgb, person_alpha)
|
39 |
+
|
40 |
+
# Create a blended version of the person with soft edges
|
41 |
+
person_blended = soft_edge_blending(person_rgb, person_alpha)
|
42 |
+
|
43 |
+
# Determine insertion position in the left image
|
44 |
+
x_offset, y_offset = 100, left_image.shape[0] - ph - 20
|
45 |
+
left_image[y_offset : y_offset + ph, x_offset : x_offset + pw] = blend_images(
|
46 |
+
left_image[y_offset : y_offset + ph, x_offset : x_offset + pw],
|
47 |
+
person_blended,
|
48 |
+
person_alpha,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Create stereoscopic effect by shifting the person image in the right image
|
52 |
+
x_offset_right = x_offset + disparity
|
53 |
+
right_image[y_offset : y_offset + ph, x_offset_right : x_offset_right + pw] = (
|
54 |
+
blend_images(
|
55 |
+
right_image[y_offset : y_offset + ph, x_offset_right : x_offset_right + pw],
|
56 |
+
person_blended,
|
57 |
+
person_alpha,
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
return left_image, right_image
|
62 |
+
|
63 |
+
|
64 |
+
def match_brightness_contrast(background, person, alpha):
|
65 |
+
# Calculate the mean brightness of the background where the person will be placed
|
66 |
+
background_mean = np.mean(background, axis=(0, 1))
|
67 |
+
person_mean = np.mean(person, axis=(0, 1))
|
68 |
+
adjustment = background_mean / (person_mean + 1e-6)
|
69 |
+
return cv2.convertScaleAbs(person, alpha=adjustment[0], beta=adjustment[1])
|
70 |
+
|
71 |
+
|
72 |
+
def match_color_tone(background, person, alpha):
|
73 |
+
# Adjust color tone to match background
|
74 |
+
bg_mean, bg_std = cv2.meanStdDev(background)
|
75 |
+
person_mean, person_std = cv2.meanStdDev(person)
|
76 |
+
scale = (bg_std + 1e-6) / (person_std + 1e-6)
|
77 |
+
person = cv2.convertScaleAbs(
|
78 |
+
person, alpha=scale[0][0], beta=(bg_mean - person_mean)[0][0]
|
79 |
+
)
|
80 |
+
return person
|
81 |
+
|
82 |
+
|
83 |
+
def soft_edge_blending(person, alpha):
|
84 |
+
# Apply Gaussian blur to soften the edges for better blending
|
85 |
+
blurred_alpha = cv2.GaussianBlur(alpha, (15, 15), 0)
|
86 |
+
person = cv2.merge(
|
87 |
+
(
|
88 |
+
person[:, :, 0] * blurred_alpha,
|
89 |
+
person[:, :, 1] * blurred_alpha,
|
90 |
+
person[:, :, 2] * blurred_alpha,
|
91 |
+
)
|
92 |
+
)
|
93 |
+
return person
|
94 |
+
|
95 |
+
|
96 |
+
def blend_images(background, person, alpha):
|
97 |
+
# Blend person into background using the alpha mask
|
98 |
+
blended = (alpha[..., None] * person + (1 - alpha[..., None]) * background).astype(
|
99 |
+
np.uint8
|
100 |
+
)
|
101 |
+
return blended
|