import streamlit as st import pandas as pd import joblib # Load the saved model loaded_model = joblib.load('diabetes_prediction_model.joblib') def predict_diabetes(data): # Use the loaded model to make predictions predicted_class = loaded_model.predict(data) return predicted_class def main(): st.title("Diabetes Prediction App") # Create input form for user to enter values st.sidebar.header("User Input Features") pregnancies = st.sidebar.slider("Pregnancies", 0, 17, 3) glucose = st.sidebar.slider("Glucose", 0, 199, 117) blood_pressure = st.sidebar.slider("Blood Pressure", 0, 122, 72) skin_thickness = st.sidebar.slider("Skin Thickness", 0, 99, 23) insulin = st.sidebar.slider("Insulin", 0, 846, 30) bmi = st.sidebar.slider("BMI", 0.0, 67.1, 32.0) diabetes_pedigree_function = st.sidebar.slider("Diabetes Pedigree Function", 0.078, 2.42, 0.3725) age = st.sidebar.slider("Age", 21, 81, 29) # Create a DataFrame from user input user_data = pd.DataFrame({ 'Pregnancies': [pregnancies], 'Glucose': [glucose], 'BloodPressure': [blood_pressure], 'SkinThickness': [skin_thickness], 'Insulin': [insulin], 'BMI': [bmi], 'DiabetesPedigreeFunction': [diabetes_pedigree_function], 'Age': [age] }) # Make prediction if st.button("Predict"): prediction = predict_diabetes(user_data) st.success(f"The individual is {'Diabetic' if prediction[0] == 1 else 'Not Diabetic'}.") if __name__ == "__main__": main()