Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
SAFETY_CHECKER = True
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
repo = "ByteDance/SDXL-Lightning"
|
14 |
+
checkpoints = {
|
15 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
16 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
17 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
18 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
19 |
+
}
|
20 |
+
loaded = None
|
21 |
+
|
22 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
25 |
+
|
26 |
+
if SAFETY_CHECKER:
|
27 |
+
from safety_checker import StableDiffusionSafetyChecker
|
28 |
+
from transformers import CLIPFeatureExtractor
|
29 |
+
|
30 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
31 |
+
"CompVis/stable-diffusion-safety-checker"
|
32 |
+
).to("cuda")
|
33 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
34 |
+
"openai/clip-vit-base-patch32"
|
35 |
+
)
|
36 |
+
|
37 |
+
def check_nsfw_images(
|
38 |
+
images: list[Image.Image],
|
39 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
40 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
41 |
+
has_nsfw_concepts = safety_checker(
|
42 |
+
images=[images],
|
43 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
44 |
+
)
|
45 |
+
|
46 |
+
return images, has_nsfw_concepts
|
47 |
+
|
48 |
+
# Function
|
49 |
+
@spaces.GPU(enable_queue=True)
|
50 |
+
def generate_image(prompt, ckpt):
|
51 |
+
global loaded
|
52 |
+
print(prompt, ckpt)
|
53 |
+
|
54 |
+
checkpoint = checkpoints[ckpt][0]
|
55 |
+
num_inference_steps = checkpoints[ckpt][1]
|
56 |
+
|
57 |
+
if loaded != num_inference_steps:
|
58 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
59 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
60 |
+
loaded = num_inference_steps
|
61 |
+
|
62 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
63 |
+
|
64 |
+
if SAFETY_CHECKER:
|
65 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
66 |
+
if any(has_nsfw_concepts):
|
67 |
+
gr.Warning("NSFW content detected.")
|
68 |
+
return Image.new("RGB", (512, 512))
|
69 |
+
return images[0]
|
70 |
+
return results.images[0]
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Gradio Interface
|
75 |
+
|
76 |
+
with gr.Blocks(css="style.css") as demo:
|
77 |
+
gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
|
78 |
+
gr.HTML("<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>")
|
79 |
+
with gr.Group():
|
80 |
+
with gr.Row():
|
81 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
82 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
83 |
+
submit = gr.Button(scale=1, variant='primary')
|
84 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
85 |
+
|
86 |
+
prompt.submit(fn=generate_image,
|
87 |
+
inputs=[prompt, ckpt],
|
88 |
+
outputs=img,
|
89 |
+
)
|
90 |
+
submit.click(fn=generate_image,
|
91 |
+
inputs=[prompt, ckpt],
|
92 |
+
outputs=img,
|
93 |
+
)
|
94 |
+
|
95 |
+
demo.queue().launch()
|