from email.utils import parseaddr from huggingface_hub import HfApi import os import datetime import json import pandas as pd import gradio as gr LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard" # RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results" TOKEN = os.environ.get("TOKEN", None) YEAR_VERSION = "2024" api = HfApi(token=TOKEN) def format_error(msg): return f"

{msg}

" def format_warning(msg): return f"

{msg}

" def format_log(msg): return f"

{msg}

" def model_hyperlink(link, model_name): return f'{model_name}' def input_verification(method_name, url, path_to_file, organisation, mail): for input in [method_name, url, path_to_file, organisation, mail]: if input == "": return format_warning("Please fill all the fields.") # Very basic email parsing _, parsed_mail = parseaddr(mail) if not "@" in parsed_mail: return format_warning("Please provide a valid email adress.") if path_to_file is None: return format_warning("Please attach a file.") # check the required fields required_fields = ["Method", "Submitted By", "url", "organisation", "mail"] # Check if the required_fields are not blank for field in required_fields: if field not in locals(): raise gr.Error(f"{field} cannot be blank") return parsed_mail def add_new_eval( method_name: str, submitted_by: str, url: str, path_to_file: str, organisation: str, mail: str, ): parsed_mail = input_verification( method_name, url, path_to_file, organisation, mail, ) # # load the file # df = pd.read_csv(path_to_file) # submission_df = pd.read_csv(path_to_file) # # modify the df to include metadata # df["Method"] = method_name # df["url"] = url # df["organisation"] = organisation # df["mail"] = parsed_mail # df["timestamp"] = datetime.datetime.now() # submission_df = pd.read_csv(path_to_file) # submission_df["Method"] = method_name # submission_df["Submitted By"] = organisation # # upload to spaces using the hf api at # path_in_repo = f"submissions/{method_name}" # file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv" # upload the df to spaces import io # read the submission json file with open(path_to_file, "r") as f: submission = json.load(f) with open("submissions/baseline/results.json", "r") as f: results = json.load(f) # update the results results.append(submission[0]) leaderboard_buffer = io.BytesIO() # df.to_csv(buffer, index=False) # Write the DataFrame to a buffer in CSV format # buffer.seek(0) # Rewind the buffer to the beginning # save the results to buffer leaderboard_buffer.write(json.dumps(results).encode()) leaderboard_buffer.seek(0) # api.upload_file( # repo_id=RESULTS_PATH, # path_in_repo=f"{path_in_repo}/{file_name}", # path_or_fileobj=buffer, # token=TOKEN, # repo_type="dataset", # ) # # read the leaderboard # leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv") # # append the new submission_df csv to the leaderboard # # leaderboard_df = leaderboard_df._append(submission_df) # # leaderboard_df = pd.concat([leaderboard_df, submission_df], ignore_index=True) # # save the new leaderboard # # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False) # leaderboard_buffer = io.BytesIO() # leaderboard_df.to_csv(leaderboard_buffer, index=False) # leaderboard_buffer.seek(0) # with open("submissions/baseline/results.json", "w") as f: # json.dump(results, f) api.upload_file( repo_id=LEADERBOARD_PATH, # path_in_repo=f"submissions/baseline/baseline.csv", path_in_repo=f"submissions/baseline/results.json", path_or_fileobj=leaderboard_buffer, token=TOKEN, repo_type="space", ) return format_log( f"Method {method_name} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed" )