import json import os import time import uuid import cv2 import gradio as gr import numpy as np from PIL import Image from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from src.generation import call_generation from src.util import upload_np_2_oss, upload_json_string_2_oss, upload_preprocess, merge_images universal_matting = pipeline(Tasks.universal_matting, model='damo/cv_unet_universal-matting') img = "assets/image_gallery_en/" files = os.listdir(img) files = [file for file in files if file.lower().endswith(('.png', '.jpg', '.jpeg'))] files = sorted(files) basic_usage = [] showcases = [] for idx, name in enumerate(files): temp = os.path.join(os.path.dirname(__file__), img, name) if idx < 4: basic_usage.append(temp) else: showcases.append(temp) # - - - - - examples - - - - - # ep = "assets/examples" # Layout, Style, Color, Subject, Prompt,Strict Layout Edge,Layout Content Scale, Automatic Image Matting image_examples = [ [0, f"{ep}/00_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0., True], [1, f"{ep}/01_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True], [2, f"{ep}/empty.png", f"{ep}/02_style.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True], [3, f"{ep}/empty.png", f"{ep}/03_style.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True], [4, f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/04_color.png", f"{ep}/empty.png", "A moose, Merry Christmas", True, 0.8, True], [5, f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/05_color.png", f"{ep}/empty.png", "A photo about cherry blossom", True, 0.8, True], [6, f"{ep}/06_layout.png", f"{ep}/06_style.jpeg", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True], [7, f"{ep}/07_layout.jpeg", f"{ep}/07_style.jpeg", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True], [8, f"{ep}/empty.png", f"{ep}/08_style.png", f"{ep}/08_color.jpeg", f"{ep}/empty.png", "", True, 0.8, True], [9, f"{ep}/empty.png", f"{ep}/09_style.png", f"{ep}/empty.png", f"{ep}/base_image1.jpeg", "", True, 0.8, True], [10, f"{ep}/10_layout.png", f"{ep}/10_style.png", f"{ep}/empty.png", f"{ep}/base_image2.png", "", True, 0.8, False], [11, f"{ep}/11_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/base_image4.png", "", False, 0.8, False], [12, f"{ep}/12_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/base_image3.png", "", False, 0.8, False], ] example_images = [ [0, f"{ep}/layout_image1.jpeg", None, None, None], [1, f"{ep}/layout_image1.jpeg", None, None, None], [2, None, f"{ep}/style_image1.jpeg", None, None], [3, None, f"{ep}/style_image1.jpeg", None, None], [4, None, None, f"{ep}/color_image1.jpeg", None], [5, None, None, f"{ep}/color_image3.jpeg", None], [6, f"{ep}/layout_image2.jpeg", f"{ep}/style_image2.jpeg", None, None], [7, f"{ep}/layout_image3.jpeg", f"{ep}/style_image3.jpeg", None, None], [8, None, f"{ep}/style_image4.jpeg", f"{ep}/color_image2.jpeg", None], [9, None, f"{ep}/style_image6.jpeg", None, f"{ep}/09_base.png"], [10, f"{ep}/layout_image5.jpeg", f"{ep}/style_image5.jpeg", None, f"{ep}/10_base.png"], [11, f"{ep}/layout_image7.jpeg", None, None, f"{ep}/11_base.png"], [12, f"{ep}/layout_image6.jpeg", None, None, f"{ep}/12_base.png"], ] example_masks = [ [0, None, None, None], [1, f"{ep}/layout_image1_mask.png", None, None], [2, None, f"{ep}/style_image1_mask.png", None], [3, None, f"{ep}/style_image1_mask2.png", None], [4, None, None, None], [5, None, None, f"{ep}/color_image3_mask.png"], [6, None, None, None], [7, None, None, None], [8, None, None, None], [9, None, f"{ep}/style_image6_mask.png", None], [10, f"{ep}/layout_image5_mask.png", None, None], [11, None, None, None], [12, f"{ep}/layout_image6_mask.png", None, None], ] def process_example(example_idx, pil_layout_image, pil_style_image, pil_color_image, pil_base_image_rgba, prompt, strict_edge, layout_scale, preprocess_base_image): _, layout_image, style_image, color_image, base_image_rgba = example_images[example_idx] _, layout_mask, style_mask, color_mask = example_masks[example_idx] pil_layout_image = None if layout_image is None else pil_layout_image pil_style_image = None if style_image is None else pil_style_image pil_color_image = None if color_image is None else pil_color_image pil_base_image_rgba = None if base_image_rgba is None else pil_base_image_rgba return pil_layout_image, layout_mask, pil_style_image, style_mask, pil_color_image, color_mask, \ pil_base_image_rgba, prompt, strict_edge, layout_scale, preprocess_base_image def process(pil_base_image_rgba=None, preprocess_base_image=False, pil_layout_image_dict=None, layout_scale=1.0, edge_consistency=0.5, strict_edge=False, pil_color_image_dict=None, color_scale=1.0, pil_style_image_dict=None, style_scale=1.0, prompt="best quality", negative_prompt="", pil_layout_mask=None, pil_style_mask=None, pil_color_mask=None): request_id = time.strftime('%Y%m%d-', time.localtime(time.time())) + str(uuid.uuid4()) output_aspect_ratio = 1. matting_flag = False if pil_base_image_rgba is None: base_image_url = "" pil_fg_mask = None else: if preprocess_base_image: matting_flag = True orig_image = np.array(pil_base_image_rgba) orig_alpha = np.array(pil_base_image_rgba)[..., -1] matting_alpha = universal_matting(pil_base_image_rgba)[OutputKeys.OUTPUT_IMG][..., -1] orig_image[..., -1] = ((matting_alpha > 200) * (orig_alpha > 200) * 255.).astype(np.uint8) pil_base_image_rgba = Image.fromarray(orig_image) pil_fg_mask = pil_base_image_rgba.split()[-1] w, h = pil_base_image_rgba.size output_aspect_ratio = max(1.0 * w / h, 1.0 * h / w) if output_aspect_ratio > 2: raise gr.Error("Input of subject images with aspect ratio exceeding 2 is not supported") if min(w, h) > 1536: raise gr.Error("Input of subject images with the shorter side exceeding 1536 pixels is not supported") base_image_url = upload_np_2_oss(np.array(pil_base_image_rgba), request_id + "_base.png") if pil_layout_image_dict is None: layout_image_url = "" else: np_layout_image = np.array(pil_layout_image_dict["image"].convert("RGBA")) np_layout_image, np_layout_alpha = np_layout_image[..., :3], np_layout_image[..., 3] np_layout_mask = np.array(pil_layout_image_dict["mask"].convert("L")) if pil_layout_mask is None: np_layout_mask = ((np_layout_alpha > 127) * (np_layout_mask < 127) * 255.).astype(np.uint8) else: np_layout_mask = ((np_layout_alpha > 127) * (np_layout_mask < 127) * (np.array(pil_layout_mask) > 127) * 255.).astype(np.uint8) layout_image_url = upload_np_2_oss( np.concatenate([np_layout_image, np_layout_mask[..., None]], axis=-1), request_id + "_layout.png" ) if pil_base_image_rgba is None: h, w, c = np_layout_image.shape output_aspect_ratio = max(1.0 * w / h, 1.0 * h / w) if output_aspect_ratio > 2: raise gr.Error("Input of layout images with aspect ratio exceeding 2 is not supported") if min(w, h) > 1536: raise gr.Error("Input of layout images with the shorter side exceeding 1536 pixels is not supported") if pil_style_image_dict is None: style_image_url = "" else: np_style_image = np.array(pil_style_image_dict["image"].convert("RGBA")) np_style_image, np_style_alpha = np_style_image[..., :3], np_style_image[..., 3] np_style_mask = np.array(pil_style_image_dict["mask"].convert("L")) if pil_style_mask is None: np_style_mask = ((np_style_alpha > 127) * (np_style_mask < 127) * 255.).astype(np.uint8) else: np_style_mask = ((np_style_alpha > 127) * (np_style_mask < 127) * (np.array(pil_style_mask) > 127) * 255.).astype(np.uint8) style_image_url = upload_np_2_oss( np.concatenate([np_style_image, np_style_mask[..., None]], axis=-1), request_id + "_style.png" ) if pil_color_image_dict is None: color_image_url = "" else: np_color_image = np.array(pil_color_image_dict["image"].convert("RGBA")) np_color_image, np_color_alpha = np_color_image[..., :3], np_color_image[..., 3] np_color_mask = np.array(pil_color_image_dict["mask"].convert("L")) if pil_color_mask is None: np_color_mask = ((np_color_alpha > 127) * (np_color_mask < 127) * 255.).astype(np.uint8) else: np_color_mask = ((np_color_alpha > 127) * (np_color_mask < 127) * (np.array(pil_color_mask) > 127) * 255.).astype(np.uint8) color_image_url = upload_np_2_oss( np.concatenate([np_color_image, np_color_mask[..., None]], axis=-1), request_id + "_color.png" ) res = call_generation(base_image_url=base_image_url, layout_image_url=layout_image_url, color_image_url=color_image_url, style_image_url=style_image_url, strict_edge=int(strict_edge), layout_scale=int(layout_scale * 10), edge_consistency=int(edge_consistency * 10), color_scale=int(color_scale * 10), style_scale=int(style_scale * 10), prompt=prompt, negative_prompt=negative_prompt, output_aspect_ratio=output_aspect_ratio) for idx, r in enumerate(res): upload_np_2_oss(np.array(r), request_id + f"_{idx}.jpg") if matting_flag: res.append(pil_base_image_rgba) return res, request_id, True, pil_fg_mask if __name__ == "__main__": block = gr.Blocks( title="ImageSynthesizer", css="assets/css/style.css", theme=gr.themes.Soft( radius_size=gr.themes.sizes.radius_none, text_size=gr.themes.sizes.text_md )).queue(concurrency_count=3) with block: with gr.Row(): with gr.Column(): gr.HTML(f"""