import gradio as gr from transformers import ViltProcessor, ViltForNaturalLanguageVisualReasoning import torch # NLRV2 example images torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg', 'image1.jpg') torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg', 'image2.jpg') torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/acorns_1.jpg', 'image3.jpg') torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/acorns_6.jpg', 'image4.jpg') processor = ViltProcessor.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2") model = ViltForNaturalLanguageVisualReasoning.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2") def predict(image1, image2, text): encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") # forward pass with torch.no_grad(): outputs = model(input_ids=encoding_1.input_ids, pixel_values=encoding_1.pixel_values, pixel_values_2=encoding_2.pixel_values) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1) output = dict() for label, id in model.config.label2id.items(): output[label] = probs[:,id].item() return output images = [gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")] text = gr.inputs.Textbox(lines=2, label="Sentence") label = gr.outputs.Label(num_top_classes=2, type="confidences") example_sentence_1 = "The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing." example_sentence_2 = "One image shows exactly two brown acorns in back-to-back caps on green foliage." examples = [["image1.jpg", "image2.jpg", example_sentence_1], ["image3.jpg", "image4.jpg", example_sentence_2]] title = "Interactive demo: natural language visual reasoning with ViLT" description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on NLVR2. To use it, simply upload a pair of images and type a sentence and click 'submit', or click one of the examples to load them. The model will predict whether the sentence is true or false, based on the 2 images. Read more at the links below." article = "

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision | Github Repo

" interface = gr.Interface(fn=predict, inputs=images + [text], outputs=label, examples=examples, title=title, description=description, article=article, theme="default", enable_queue=True) interface.launch(debug=True)