Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
|
3 |
+
|
4 |
+
feature_extractor = PerceiverFeatureExtractor()
|
5 |
+
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
|
6 |
+
|
7 |
+
# define custom pipeline as Perceiver expects "inputs" rather than "pixel_values"
|
8 |
+
class CustomPipeline(ImageClassificationPipeline):
|
9 |
+
def _forward(self, model_inputs):
|
10 |
+
inputs = model_inputs["pixel_values"]
|
11 |
+
model_outputs = self.model(inputs=inputs)
|
12 |
+
return model_outputs
|
13 |
+
|
14 |
+
image_pipe = CustomPipeline(model=model, feature_extractor=feature_extractor)
|
15 |
+
|
16 |
+
def classify_image(image):
|
17 |
+
results = image_pipe(image)
|
18 |
+
# convert to format Gradio expects
|
19 |
+
output = {}
|
20 |
+
for prediction in results:
|
21 |
+
predicted_label = prediction['label']
|
22 |
+
score = prediction['score']
|
23 |
+
output[predicted_label] = score
|
24 |
+
return output
|
25 |
+
|
26 |
+
image = gr.inputs.Image(type="pil")
|
27 |
+
label = gr.outputs.Label(num_top_classes=5)
|
28 |
+
|
29 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, enable_queue=True).launch(debug=True)
|