import argparse import pandas as pd import requests from tqdm import tqdm tqdm.pandas() def getFirstFamilyName(recordedBy): firstFamilyName = None parsed = bananompy.parse(recordedBy) try: firstFamilyName = parsed[0]['parsed'][0]['family'] except: pass return firstFamilyName def getFirstFamilyNames(recordedBy_l): # post to bionomia bionomia_parse_endpoint_url = "https://api.bionomia.net/parse.json" data = dict() data['names'] = '\r\n'.join(recordedBy_l) r = requests.post(bionomia_parse_endpoint_url, data=data) parsed_results = r.json() results = dict() for parsed_result in parsed_results: try: results[parsed_result['original']] = parsed_result['parsed'][0]['family'] except: results[parsed_result['original']] = None return results def getFirstFamilyNameBulk(df, recordedByColName="recordedBy", firstFamilyNameColName="recordedBy_first_familyname", batchsize=500): results = dict() recordedBy_l = [] for s in tqdm(df[recordedByColName].values): if len(recordedBy_l) == batchsize: # send it results.update(getFirstFamilyNames(recordedBy_l)) # clear for next iteration recordedBy_l = [] recordedBy_l.append(s) if len(recordedBy_l) > 0: results.update(getFirstFamilyNames(recordedBy_l)) df[firstFamilyNameColName] = df[recordedByColName].map(results) return df if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("inputfile") parser.add_argument("-c","--createcols", action='store_true') parser.add_argument("-l","--limit", type=int) parser.add_argument("outputfile") args = parser.parse_args() df = pd.read_csv(args.inputfile, encoding='utf8', keep_default_na=False, on_bad_lines='skip', sep='\t', nrows=args.limit) if args.createcols: # Extract unique recordedBy values df_rb = df[['recordedBy']].drop_duplicates() df_rb = getFirstFamilyNameBulk(df_rb) #df_rb['recordedBy_first_familyname'] = df_rb.recordedBy.progress_apply(getFirstFamilyName) # Apply back to main dataframe df = pd.merge(left = df, right=df_rb, left_on='recordedBy', right_on='recordedBy', how='left') # Add column holding collector name and number mask = (df.recordNumber.notnull()) df.loc[mask,'collectorNameAndNumber']=df[mask].apply(lambda row: '{} {}'.format(row['recordedBy_first_familyname'],row['recordNumber']),axis=1) df.to_csv(args.outputfile, index=False, sep=',')