Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio
|
2 |
import benepar
|
3 |
import spacy
|
4 |
import nltk
|
5 |
from nltk.tree import Tree
|
6 |
-
nltk.
|
7 |
|
8 |
from huggingface_hub import hf_hub_url, cached_download
|
9 |
|
@@ -13,57 +20,67 @@ from weakly_supervised_parser.model.trainer import InsideOutsideStringClassifier
|
|
13 |
|
14 |
from weakly_supervised_parser.model.span_classifier import LightningModel
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
inside_model
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
#
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import matplotlib
|
3 |
+
matplotlib.use('agg')
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
import gradio
|
9 |
import benepar
|
10 |
import spacy
|
11 |
import nltk
|
12 |
from nltk.tree import Tree
|
13 |
+
from nltk.draw.tree import TreeView
|
14 |
|
15 |
from huggingface_hub import hf_hub_url, cached_download
|
16 |
|
|
|
20 |
|
21 |
from weakly_supervised_parser.model.span_classifier import LightningModel
|
22 |
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
nltk.download('stopwords')
|
26 |
+
benepar.download('benepar_en3')
|
27 |
+
|
28 |
+
nlp = spacy.load("en_core_web_md")
|
29 |
+
nlp.add_pipe("benepar", config={"model": "benepar_en3"})
|
30 |
+
|
31 |
+
# inside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=256)
|
32 |
+
fetch_url_inside_model = hf_hub_url(repo_id="nickil/weakly-supervised-parsing", filename="inside_model.ckpt", revision="main")
|
33 |
+
inside_model = LightningModel.load_from_checkpoint(checkpoint_path=cached_download(fetch_url_inside_model))
|
34 |
+
# inside_model.load_model(pre_trained_model_path=cached_download(fetch_url_inside_model))
|
35 |
+
|
36 |
+
# outside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=64)
|
37 |
+
# outside_model.load_model(pre_trained_model_path=TRAINED_MODEL_PATH + "outside_model.onnx")
|
38 |
+
|
39 |
+
# inside_outside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=256)
|
40 |
+
# inside_outside_model.load_model(pre_trained_model_path=TRAINED_MODEL_PATH + "inside_outside_model.onnx")
|
41 |
+
|
42 |
+
|
43 |
+
def predict(sentence, model):
|
44 |
+
gold_standard = list(nlp(sentence).sents)[0]._.parse_string
|
45 |
+
if model == "inside":
|
46 |
+
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="inside", model=inside_model, scale_axis=1, predict_batch_size=128)
|
47 |
+
elif model == "outside":
|
48 |
+
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="outside", model=outside_model, scale_axis=1, predict_batch_size=128)
|
49 |
+
elif model == "inside-outside":
|
50 |
+
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="inside_outside", model=inside_outside_model, scale_axis=1, predict_batch_size=128)
|
51 |
+
sentence_f1 = calculate_F1_for_spans(tree_to_spans(gold_standard), tree_to_spans(best_parse))
|
52 |
+
TreeView(Tree.fromstring(gold_standard))._cframe.print_to_file('gold_standard.ps')
|
53 |
+
TreeView(Tree.fromstring(best_parse))._cframe.print_to_file('best_parse.ps')
|
54 |
+
os.system('convert gold_standard.ps gold_standard.png')
|
55 |
+
os.system('convert best_parse.ps best_parse.png')
|
56 |
+
gold_standard_img = Image.open("gold_standard.png")
|
57 |
+
best_parse_img = Image.open("best_parse.png")
|
58 |
+
return gold_standard_img, best_parse_img, f"{sentence_f1:.2f}"
|
59 |
+
|
60 |
+
|
61 |
+
iface = gradio.Interface(
|
62 |
+
title="Co-training an Unsupervised Constituency Parser with Weak Supervision",
|
63 |
+
description="Demo for the repository - [weakly-supervised-parsing](https://github.com/Nickil21/weakly-supervised-parsing) (ACL Findings 2022)",
|
64 |
+
theme="default",
|
65 |
+
article="""<h4 class='text-lg font-semibold my-2'>Note</h4>
|
66 |
+
- We use a strong supervised parsing model `benepar_en3` which is based on T5-small to compute the gold parse.<br>
|
67 |
+
- Sentence F1 score corresponds to the macro F1 score.
|
68 |
+
""",
|
69 |
+
allow_flagging="never",
|
70 |
+
fn=predict,
|
71 |
+
inputs=[
|
72 |
+
gradio.inputs.Textbox(label="Sentence", placeholder="Enter a sentence in English", lines=2),
|
73 |
+
gradio.inputs.Radio(["inside", "outside", "inside-outside"], default="inside", label="Choose Model"),
|
74 |
+
],
|
75 |
+
outputs=[
|
76 |
+
gradio.outputs.Image(label="Gold Parse Tree"),
|
77 |
+
gradio.outputs.Image(label="Predicted Parse Tree"),
|
78 |
+
gradio.outputs.Textbox(label="F1 score"),
|
79 |
+
],
|
80 |
+
examples=[
|
81 |
+
["Russia 's war on Ukraine unsettles investors expecting carve-out deal uptick for 2022 .", "inside-outside"],
|
82 |
+
["Bitcoin community under pressure to cut energy use .", "inside"],
|
83 |
+
],
|
84 |
+
)
|
85 |
+
|
86 |
+
iface.launch(share=True)
|