nguyennghia0902 commited on
Commit
ece53af
·
verified ·
1 Parent(s): f482515

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -2
app.py CHANGED
@@ -1,4 +1,48 @@
1
  import streamlit as st
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from st_pages import Page, show_pages
3
 
4
+ st.set_page_config(page_title="Information Retrieval", page_icon="🏠")
5
+
6
+ show_pages(
7
+ [
8
+ Page("streamlit_app.py/Homepage.py", "Home", "🏠"),
9
+ Page(
10
+ "streamlit_app.py/pages/Information_Retrieval.py", "Information Retrieval", "📝"
11
+ ),
12
+ ]
13
+ )
14
+
15
+ st.title("Project in Text Minining and Application - Information Retrieval")
16
+ st.markdown(
17
+ """
18
+ **Team members:**
19
+ | Student ID | Full Name | Email |
20
+ | ---------- | ------------------------ | ------------------------------ |
21
+ | 1712603 | Lê Quang Nam | [email protected] |
22
+ | 19120582 | Lê Nhựt Minh | [email protected] |
23
+ | 19120600 | Bùi Nguyên Nghĩa | [email protected] |
24
+ | 21120198 | Nguyễn Thị Lan Anh | [email protected] |
25
+ """
26
+ )
27
+
28
+ st.header("The Need for Information Retrieval")
29
+ st.markdown(
30
+ """
31
+ The task of classifying whether a question and a context paragraph are related to
32
+ each other is based on two main steps: word embedding and classifier. Both of these
33
+ steps together constitute the process of analyzing and evaluating the relationship
34
+ between the question and the context.
35
+ """
36
+ )
37
+
38
+ st.header("Technology used")
39
+ st.markdown(
40
+ """
41
+ The ELECTRA model, specifically the "google/electra-small-discriminator" used here,
42
+ is a deep learning model in the field of natural language processing (NLP) developed
43
+ by Google. This model is an intelligent variation of the supervised learning model
44
+ based on the Transformer architecture, designed to understand and process natural language efficiently.
45
+ For this text classification task, we choose two related classes: ElectraTokenizer and
46
+ FElectraForSequenceClassification to implement.
47
+ """
48
+ )