File size: 29,588 Bytes
699163a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import base64
import json
import os
import time
import requests
import yaml
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from threading import Thread

import numpy as np

from modules import shared
from modules.text_generation import encode, generate_reply

params = {
    'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001,
}

debug = True if 'OPENEDAI_DEBUG' in os.environ else False

# Optional, install the module and download the model to enable
# v1/embeddings
try:
    from sentence_transformers import SentenceTransformer
except ImportError:
    pass

st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embedding_model = None

standard_stopping_strings = ['\nsystem:', '\nuser:', '\nhuman:', '\nassistant:', '\n###', ]

# little helper to get defaults if arg is present but None and should be the same type as default.
def default(dic, key, default):
    val = dic.get(key, default)
    if type(val) != type(default):
        # maybe it's just something like 1 instead of 1.0
        try:
            v = type(default)(val)
            if type(val)(v) == val:  # if it's the same value passed in, it's ok.
                return v
        except:
            pass

        val = default
    return val


def clamp(value, minvalue, maxvalue):
    return max(minvalue, min(value, maxvalue))


def deduce_template():
    # Alpaca is verbose so a good default prompt
    default_template = (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    )

    # Use the special instruction/input/response template for anything trained like Alpaca
    if shared.settings['instruction_template'] in ['Alpaca', 'Alpaca-Input']:
        return default_template

    try:
        instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))

        template = instruct['turn_template']
        template = template\
            .replace('<|user|>', instruct.get('user', ''))\
            .replace('<|bot|>', instruct.get('bot', ''))\
            .replace('<|user-message|>', '{instruction}\n{input}')
        return instruct.get('context', '') + template[:template.find('<|bot-message|>')].rstrip(' ')
    except:
        return default_template


def float_list_to_base64(float_list):
    # Convert the list to a float32 array that the OpenAPI client expects
    float_array = np.array(float_list, dtype="float32")

    # Get raw bytes
    bytes_array = float_array.tobytes()

    # Encode bytes into base64
    encoded_bytes = base64.b64encode(bytes_array)

    # Turn raw base64 encoded bytes into ASCII
    ascii_string = encoded_bytes.decode('ascii')
    return ascii_string


class Handler(BaseHTTPRequestHandler):
    def do_GET(self):
        if self.path.startswith('/v1/models'):

            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            # TODO: list all models and allow model changes via API? Lora's?
            # This API should list capabilities, limits and pricing...
            models = [{
                "id": shared.model_name,  # The real chat/completions model
                "object": "model",
                "owned_by": "user",
                "permission": []
            }, {
                "id": st_model,  # The real sentence transformer embeddings model
                "object": "model",
                "owned_by": "user",
                "permission": []
            }, {  # these are expected by so much, so include some here as a dummy
                "id": "gpt-3.5-turbo",  # /v1/chat/completions
                "object": "model",
                "owned_by": "user",
                "permission": []
            }, {
                "id": "text-curie-001",  # /v1/completions, 2k context
                "object": "model",
                "owned_by": "user",
                "permission": []
            }, {
                "id": "text-davinci-002",  # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768
                "object": "model",
                "owned_by": "user",
                "permission": []
            }]

            response = ''
            if self.path == '/v1/models':
                response = json.dumps({
                    "object": "list",
                    "data": models,
                })
            else:
                the_model_name = self.path[len('/v1/models/'):]
                response = json.dumps({
                    "id": the_model_name,
                    "object": "model",
                    "owned_by": "user",
                    "permission": []
                })

            self.wfile.write(response.encode('utf-8'))
        else:
            self.send_error(404)

    def do_POST(self):
        if debug:
            print(self.headers)  # did you know... python-openai sends your linux kernel & python version?
        content_length = int(self.headers['Content-Length'])
        body = json.loads(self.rfile.read(content_length).decode('utf-8'))

        if debug:
            print(body)

        if '/completions' in self.path or '/generate' in self.path:
            is_legacy = '/generate' in self.path
            is_chat = 'chat' in self.path
            resp_list = 'data' if is_legacy else 'choices'

            # XXX model is ignored for now
            # model = body.get('model', shared.model_name) # ignored, use existing for now
            model = shared.model_name
            created_time = int(time.time())
            cmpl_id = "conv-%d" % (created_time)

            # Try to use openai defaults or map them to something with the same intent
            stopping_strings = default(shared.settings, 'custom_stopping_strings', [])
            if 'stop' in body:
                if isinstance(body['stop'], str):
                    stopping_strings = [body['stop']]
                elif isinstance(body['stop'], list):
                    stopping_strings = body['stop']

            truncation_length = default(shared.settings, 'truncation_length', 2048)
            truncation_length = clamp(default(body, 'truncation_length', truncation_length), 1, truncation_length)

            default_max_tokens = truncation_length if is_chat else 16  # completions default, chat default is 'inf' so we need to cap it.

            max_tokens_str = 'length' if is_legacy else 'max_tokens'
            max_tokens = default(body, max_tokens_str, default(shared.settings, 'max_new_tokens', default_max_tokens))

            # hard scale this, assuming the given max is for GPT3/4, perhaps inspect the requested model and lookup the context max
            while truncation_length <= max_tokens:
                max_tokens = max_tokens // 2

            req_params = {
                'max_new_tokens': max_tokens,
                'temperature': default(body, 'temperature', 1.0),
                'top_p': default(body, 'top_p', 1.0),
                'top_k': default(body, 'best_of', 1),
                # XXX not sure about this one, seems to be the right mapping, but the range is different (-2..2.0) vs 0..2
                # 0 is default in openai, but 1.0 is default in other places. Maybe it's scaled? scale it.
                'repetition_penalty': 1.18,  # (default(body, 'presence_penalty', 0) + 2.0 ) / 2.0, # 0 the real default, 1.2 is the model default, but 1.18 works better.
                # XXX not sure about this one either, same questions. (-2..2.0), 0 is default not 1.0, scale it.
                'encoder_repetition_penalty': 1.0,  # (default(body, 'frequency_penalty', 0) + 2.0) / 2.0,
                'suffix': body.get('suffix', None),
                'stream': default(body, 'stream', False),
                'echo': default(body, 'echo', False),
                #####################################################
                'seed': shared.settings.get('seed', -1),
                # int(body.get('n', 1)) # perhaps this should be num_beams or chat_generation_attempts? 'n' doesn't have a direct map
                # unofficial, but it needs to get set anyways.
                'truncation_length': truncation_length,
                # no more args.
                'add_bos_token': shared.settings.get('add_bos_token', True),
                'do_sample': True,
                'typical_p': 1.0,
                'min_length': 0,
                'no_repeat_ngram_size': 0,
                'num_beams': 1,
                'penalty_alpha': 0.0,
                'length_penalty': 1,
                'early_stopping': False,
                'ban_eos_token': False,
                'skip_special_tokens': True,
            }

            # fixup absolute 0.0's
            for par in ['temperature', 'repetition_penalty', 'encoder_repetition_penalty']:
                req_params[par] = clamp(req_params[par], 0.001, 1.999)

            self.send_response(200)
            if req_params['stream']:
                self.send_header('Content-Type', 'text/event-stream')
                self.send_header('Cache-Control', 'no-cache')
                # self.send_header('Connection', 'keep-alive')
            else:
                self.send_header('Content-Type', 'application/json')
            self.end_headers()

            token_count = 0
            completion_token_count = 0
            prompt = ''
            stream_object_type = ''
            object_type = ''

            if is_chat:
                stream_object_type = 'chat.completions.chunk'
                object_type = 'chat.completions'

                messages = body['messages']

                system_msg = ''  # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
                if 'prompt' in body:  # Maybe they sent both? This is not documented in the API, but some clients seem to do this.
                    system_msg = body['prompt']

                chat_msgs = []

                for m in messages:
                    role = m['role']
                    content = m['content']
                    # name = m.get('name', 'user')
                    if role == 'system':
                        system_msg += content
                    else:
                        chat_msgs.extend([f"\n{role}: {content.strip()}"])  # Strip content? linefeed?

                system_token_count = len(encode(system_msg)[0])
                remaining_tokens = req_params['truncation_length'] - req_params['max_new_tokens'] - system_token_count
                chat_msg = ''

                while chat_msgs:
                    new_msg = chat_msgs.pop()
                    new_size = len(encode(new_msg)[0])
                    if new_size <= remaining_tokens:
                        chat_msg = new_msg + chat_msg
                        remaining_tokens -= new_size
                    else:
                        # TODO: clip a message to fit?
                        # ie. user: ...<clipped message>
                        break

                if len(chat_msgs) > 0:
                    print(f"truncating chat messages, dropping {len(chat_msgs)} messages.")

                if system_msg:
                    prompt = 'system: ' + system_msg + '\n' + chat_msg + '\nassistant: '
                else:
                    prompt = chat_msg + '\nassistant: '

                token_count = len(encode(prompt)[0])

                # pass with some expected stop strings.
                # some strange cases of "##| Instruction: " sneaking through.
                stopping_strings += standard_stopping_strings
                req_params['custom_stopping_strings'] = stopping_strings
            else:
                stream_object_type = 'text_completion.chunk'
                object_type = 'text_completion'

                # ... encoded as a string, array of strings, array of tokens, or array of token arrays.
                if is_legacy:
                    prompt = body['context']  # Older engines.generate API
                else:
                    prompt = body['prompt']  # XXX this can be different types

                if isinstance(prompt, list):
                    prompt = ''.join(prompt)  # XXX this is wrong... need to split out to multiple calls?

                token_count = len(encode(prompt)[0])
                if token_count >= req_params['truncation_length']:
                    new_len = int(len(prompt) * (float(shared.settings['truncation_length']) - req_params['max_new_tokens']) / token_count)
                    prompt = prompt[-new_len:]
                    print(f"truncating prompt to {new_len} characters, was {token_count} tokens. Now: {len(encode(prompt)[0])} tokens.")

                # pass with some expected stop strings.
                # some strange cases of "##| Instruction: " sneaking through.
                stopping_strings += standard_stopping_strings
                req_params['custom_stopping_strings'] = stopping_strings

            if req_params['stream']:
                shared.args.chat = True
                # begin streaming
                chunk = {
                    "id": cmpl_id,
                    "object": stream_object_type,
                    "created": created_time,
                    "model": shared.model_name,
                    resp_list: [{
                        "index": 0,
                        "finish_reason": None,
                    }],
                }

                if stream_object_type == 'text_completion.chunk':
                    chunk[resp_list][0]["text"] = ""
                else:
                    # This is coming back as "system" to the openapi cli, not sure why.
                    # So yeah... do both methods? delta and messages.
                    chunk[resp_list][0]["message"] = {'role': 'assistant', 'content': ''}
                    chunk[resp_list][0]["delta"] = {'role': 'assistant', 'content': ''}
                    # { "role": "assistant" }

                response = 'data: ' + json.dumps(chunk) + '\n'
                self.wfile.write(response.encode('utf-8'))

            # generate reply #######################################
            if debug:
                print({'prompt': prompt, 'req_params': req_params, 'stopping_strings': stopping_strings})
            generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

            answer = ''
            seen_content = ''
            longest_stop_len = max([len(x) for x in stopping_strings])

            for a in generator:
                answer = a

                stop_string_found = False
                len_seen = len(seen_content)
                search_start = max(len_seen - longest_stop_len, 0)

                for string in stopping_strings:
                    idx = answer.find(string, search_start)
                    if idx != -1:
                        answer = answer[:idx]  # clip it.
                        stop_string_found = True

                if stop_string_found:
                    break

                # If something like "\nYo" is generated just before "\nYou:"
                # is completed, buffer and generate more, don't send it
                buffer_and_continue = False

                for string in stopping_strings:
                    for j in range(len(string) - 1, 0, -1):
                        if answer[-j:] == string[:j]:
                            buffer_and_continue = True
                            break
                    else:
                        continue
                    break

                if buffer_and_continue:
                    continue

                if req_params['stream']:
                    # Streaming
                    new_content = answer[len_seen:]

                    if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
                        continue

                    seen_content = answer
                    chunk = {
                        "id": cmpl_id,
                        "object": stream_object_type,
                        "created": created_time,
                        "model": shared.model_name,
                        resp_list: [{
                            "index": 0,
                            "finish_reason": None,
                        }],
                    }
                    if stream_object_type == 'text_completion.chunk':
                        chunk[resp_list][0]['text'] = new_content
                    else:
                        # So yeah... do both methods? delta and messages.
                        chunk[resp_list][0]['message'] = {'content': new_content}
                        chunk[resp_list][0]['delta'] = {'content': new_content}
                    response = 'data: ' + json.dumps(chunk) + '\n'
                    self.wfile.write(response.encode('utf-8'))
                    completion_token_count += len(encode(new_content)[0])

            if req_params['stream']:
                chunk = {
                    "id": cmpl_id,
                    "object": stream_object_type,
                    "created": created_time,
                    "model": model,  # TODO: add Lora info?
                    resp_list: [{
                        "index": 0,
                        "finish_reason": "stop",
                    }],
                    "usage": {
                        "prompt_tokens": token_count,
                        "completion_tokens": completion_token_count,
                        "total_tokens": token_count + completion_token_count
                    }
                }
                if stream_object_type == 'text_completion.chunk':
                    chunk[resp_list][0]['text'] = ''
                else:
                    # So yeah... do both methods? delta and messages.
                    chunk[resp_list][0]['message'] = {'content': ''}
                    chunk[resp_list][0]['delta'] = {}
                response = 'data: ' + json.dumps(chunk) + '\ndata: [DONE]\n'
                self.wfile.write(response.encode('utf-8'))
                # Finished if streaming.
                if debug:
                    print({'response': answer})
                return

            if debug:
                print({'response': answer})

            completion_token_count = len(encode(answer)[0])
            stop_reason = "stop"
            if token_count + completion_token_count >= req_params['truncation_length']:
                stop_reason = "length"

            resp = {
                "id": cmpl_id,
                "object": object_type,
                "created": created_time,
                "model": model,  # TODO: add Lora info?
                resp_list: [{
                    "index": 0,
                    "finish_reason": stop_reason,
                }],
                "usage": {
                    "prompt_tokens": token_count,
                    "completion_tokens": completion_token_count,
                    "total_tokens": token_count + completion_token_count
                }
            }

            if is_chat:
                resp[resp_list][0]["message"] = {"role": "assistant", "content": answer}
            else:
                resp[resp_list][0]["text"] = answer

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))
        elif '/edits' in self.path:
            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            created_time = int(time.time())

            # Using Alpaca format, this may work with other models too.
            instruction = body['instruction']
            input = body.get('input', '')

            instruction_template = deduce_template()
            edit_task = instruction_template.format(instruction=instruction, input=input)

            truncation_length = default(shared.settings, 'truncation_length', 2048)
            token_count = len(encode(edit_task)[0])
            max_tokens = truncation_length - token_count

            req_params = {
                'max_new_tokens': max_tokens,
                'temperature': clamp(default(body, 'temperature', 1.0), 0.001, 1.999),
                'top_p': clamp(default(body, 'top_p', 1.0), 0.001, 1.0),
                'top_k': 1,
                'repetition_penalty': 1.18,
                'encoder_repetition_penalty': 1.0,
                'suffix': None,
                'stream': False,
                'echo': False,
                'seed': shared.settings.get('seed', -1),
                # 'n' : default(body, 'n', 1),  # 'n' doesn't have a direct map
                'truncation_length': truncation_length,
                'add_bos_token': shared.settings.get('add_bos_token', True),
                'do_sample': True,
                'typical_p': 1.0,
                'min_length': 0,
                'no_repeat_ngram_size': 0,
                'num_beams': 1,
                'penalty_alpha': 0.0,
                'length_penalty': 1,
                'early_stopping': False,
                'ban_eos_token': False,
                'skip_special_tokens': True,
                'custom_stopping_strings': [],
            }

            if debug:
                print({'edit_template': edit_task, 'req_params': req_params, 'token_count': token_count})
            
            generator = generate_reply(edit_task, req_params, stopping_strings=standard_stopping_strings, is_chat=False)

            answer = ''
            for a in generator:
                answer = a

            # some reply's have an extra leading space to fit the instruction template, just clip it off from the reply.
            if edit_task[-1] != '\n' and answer and answer[0] == ' ':
                answer = answer[1:]

            completion_token_count = len(encode(answer)[0])

            resp = {
                "object": "edit",
                "created": created_time,
                "choices": [{
                    "text": answer,
                    "index": 0,
                }],
                "usage": {
                    "prompt_tokens": token_count,
                    "completion_tokens": completion_token_count,
                    "total_tokens": token_count + completion_token_count
                }
            }

            if debug:
                print({'answer': answer, 'completion_token_count': completion_token_count})

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))
        elif '/images/generations' in self.path and 'SD_WEBUI_URL' in os.environ:
            # Stable Diffusion callout wrapper for txt2img
            # Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
            # the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
            # If you want high quality tailored results you should just use the Stable Diffusion API directly.
            # it's too general an API to try and shape the result with specific tags like "masterpiece", etc,
            # Will probably work best with the stock SD models.
            # SD configuration is beyond the scope of this API.
            # At this point I will not add the edits and variations endpoints (ie. img2img) because they
            # require changing the form data handling to accept multipart form data, also to properly support
            # url return types will require file management and a web serving files... Perhaps later!

            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            width, height = [ int(x) for x in default(body, 'size', '1024x1024').split('x') ]  # ignore the restrictions on size
            response_format = default(body, 'response_format', 'url')  # or b64_json
            
            payload = {
                'prompt': body['prompt'],  # ignore prompt limit of 1000 characters
                'width': width,
                'height': height,
                'batch_size': default(body, 'n', 1)  # ignore the batch limits of max 10
            }

            resp = {
                'created': int(time.time()),
                'data': []
            }

            # TODO: support SD_WEBUI_AUTH username:password pair.
            sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img"

            response = requests.post(url=sd_url, json=payload)
            r = response.json()
            # r['parameters']...
            for b64_json in r['images']:
                if response_format == 'b64_json':
                    resp['data'].extend([{'b64_json': b64_json}])
                else:
                    resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}])  # yeah it's lazy. requests.get() will not work with this

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))
        elif '/embeddings' in self.path and embedding_model is not None:
            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            input = body['input'] if 'input' in body else body['text']
            if type(input) is str:
                input = [input]

            embeddings = embedding_model.encode(input).tolist()

            def enc_emb(emb):
                # If base64 is specified, encode. Otherwise, do nothing.
                if body.get("encoding_format", "") == "base64":
                    return float_list_to_base64(emb)
                else:
                    return emb
            data = [{"object": "embedding", "embedding": enc_emb(emb), "index": n} for n, emb in enumerate(embeddings)]

            response = json.dumps({
                "object": "list",
                "data": data,
                "model": st_model,  # return the real model
                "usage": {
                    "prompt_tokens": 0,
                    "total_tokens": 0,
                }
            })

            if debug:
                print(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
            self.wfile.write(response.encode('utf-8'))
        elif '/moderations' in self.path:
            # for now do nothing, just don't error.
            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            response = json.dumps({
                "id": "modr-5MWoLO",
                "model": "text-moderation-001",
                "results": [{
                    "categories": {
                        "hate": False,
                        "hate/threatening": False,
                        "self-harm": False,
                        "sexual": False,
                        "sexual/minors": False,
                        "violence": False,
                        "violence/graphic": False
                    },
                    "category_scores": {
                        "hate": 0.0,
                        "hate/threatening": 0.0,
                        "self-harm": 0.0,
                        "sexual": 0.0,
                        "sexual/minors": 0.0,
                        "violence": 0.0,
                        "violence/graphic": 0.0
                    },
                    "flagged": False
                }]
            })
            self.wfile.write(response.encode('utf-8'))

        elif self.path == '/api/v1/token-count':
            # NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
            self.send_response(200)
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            tokens = encode(body['prompt'])[0]
            response = json.dumps({
                'results': [{
                    'tokens': len(tokens)
                }]
            })
            self.wfile.write(response.encode('utf-8'))
        else:
            print(self.path, self.headers)
            self.send_error(404)


def run_server():
    global embedding_model
    try:
        embedding_model = SentenceTransformer(st_model)
        print(f"\nLoaded embedding model: {st_model}, max sequence length: {embedding_model.max_seq_length}")
    except:
        print(f"\nFailed to load embedding model: {st_model}")
        pass

    server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port'])
    server = ThreadingHTTPServer(server_addr, Handler)
    if shared.args.share:
        try:
            from flask_cloudflared import _run_cloudflared
            public_url = _run_cloudflared(params['port'], params['port'] + 1)
            print(f'Starting OpenAI compatible api at\nOPENAI_API_BASE={public_url}/v1')
        except ImportError:
            print('You should install flask_cloudflared manually')
    else:
        print(f'Starting OpenAI compatible api:\nOPENAI_API_BASE=http://{server_addr[0]}:{server_addr[1]}/v1')
        
    server.serve_forever()


def setup():
    Thread(target=run_server, daemon=True).start()