import os
from i18n.i18n import I18nAuto
from configs.config import Config
from sklearn.cluster import MiniBatchKMeans
import torch, platform
import numpy as np
import gradio as gr
import faiss
import fairseq
import pathlib
import json
from time import sleep
from subprocess import Popen
from random import shuffle
import warnings
import traceback
import threading
import shutil
import logging
import sys
from dotenv import load_dotenv
from infer.modules.vc.modules import VC
import shutil, glob
from easyfuncs import download_from_url, CachedModels
now_dir = os.getcwd()
sys.path.append(now_dir)
load_dotenv()
model_library = CachedModels()
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
config = Config()
vc = VC(config)
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
weight_root = os.getenv("weight_root")
index_root = os.getenv("index_root")
outside_index_root = os.getenv("outside_index_root")
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
def lookup_indices(index_root):
global index_paths
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
lookup_indices(index_root)
lookup_indices(outside_index_root)
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"}, {
"choices": sorted(index_paths),
"__type__": "update",
}
def clean():
return {"value": "", "__type__": "update"}
def if_done(done, p):
while 1:
if p.poll() is None:
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() is None:
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
with gr.Row():
gr.Markdown("
RVC V2 - EASY GUI")
with gr.Tabs():
with gr.TabItem("Inference"):
with gr.Row():
voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
refresh_button = gr.Button("Refresh", variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label="Speaker ID",
value=0,
visible=False,
interactive=True,
)
vc_transform0 = gr.Number(
label="Pitch",
value=0
)
but0 = gr.Button(value="Convert", variant="primary")
with gr.Row():
with gr.Column():
with gr.Row():
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
with gr.Row():
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
with gr.Row():
paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
input_audio0 = gr.Dropdown(
label="Input Path",
value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',
choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg
allow_custom_value=True
)
with gr.Row():
audio_player = gr.Audio()
input_audio0.change(
inputs=[input_audio0],
outputs=[audio_player],
fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None
)
record_button.stop_recording(
fn=lambda audio:audio, #TODO save wav lambda
inputs=[record_button],
outputs=[input_audio0])
dropbox.upload(
fn=lambda audio:audio.name,
inputs=[dropbox],
outputs=[input_audio0])
with gr.Column():
with gr.Accordion("Change Index", open=False):
file_index2 = gr.Dropdown(
label="Change Index",
choices=sorted(index_paths),
interactive=True,
value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="Index Strength",
value=0.5,
interactive=True,
)
vc_output2 = gr.Audio(label="Output")
with gr.Accordion("General Settings", open=False):
f0method0 = gr.Radio(
label="Method",
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label="Breathiness Reduction (Harvest only)",
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label="Resample",
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Volume Normalization",
value=0,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
value=0.33,
step=0.01,
interactive=True,
)
if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)
file_index1 = gr.Textbox(
label="Index Path",
interactive=True,
visible=False#Not used here
)
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[voice_model, file_index2],
api_name="infer_refresh",
)
refresh_button.click(
fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
inputs=[],
outputs = [input_audio0],
)
refresh_button.click(
fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
inputs=[],
outputs = [input_audio0],
)
with gr.Row():
f0_file = gr.File(label="F0 Path", visible=False)
with gr.Row():
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)
but0.click(
vc.vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
api_name="infer_convert",
)
voice_model.change(
fn=vc.get_vc,
inputs=[voice_model, protect0, protect0],
outputs=[spk_item, protect0, protect0, file_index2, file_index2],
api_name="infer_change_voice",
)
with gr.TabItem("Download Models"):
with gr.Row():
url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
url_download = gr.Button(value="Download Model",scale=2)
url_download.click(
inputs=[url_input,name_output],
outputs=[url_input],
fn=download_from_url,
)
with gr.Row():
model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
download_from_browser = gr.Button(value="Get",scale=2)
download_from_browser.click(
inputs=[model_browser],
outputs=[model_browser],
fn=lambda model: download_from_url(model_library.models[model],model),
)
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
)