Delete infer/modules/train
Browse files- infer/modules/train/extract/extract_f0_print.py +0 -175
- infer/modules/train/extract/extract_f0_rmvpe.py +0 -141
- infer/modules/train/extract/extract_f0_rmvpe_dml.py +0 -139
- infer/modules/train/extract_feature_print.py +0 -142
- infer/modules/train/preprocess.py +0 -142
- infer/modules/train/train.py +0 -640
infer/modules/train/extract/extract_f0_print.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import traceback
|
4 |
-
|
5 |
-
import parselmouth
|
6 |
-
|
7 |
-
now_dir = os.getcwd()
|
8 |
-
sys.path.append(now_dir)
|
9 |
-
import logging
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import pyworld
|
13 |
-
|
14 |
-
from infer.lib.audio import load_audio
|
15 |
-
|
16 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
17 |
-
from multiprocessing import Process
|
18 |
-
|
19 |
-
exp_dir = sys.argv[1]
|
20 |
-
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
21 |
-
|
22 |
-
|
23 |
-
def printt(strr):
|
24 |
-
print(strr)
|
25 |
-
f.write("%s\n" % strr)
|
26 |
-
f.flush()
|
27 |
-
|
28 |
-
|
29 |
-
n_p = int(sys.argv[2])
|
30 |
-
f0method = sys.argv[3]
|
31 |
-
|
32 |
-
|
33 |
-
class FeatureInput(object):
|
34 |
-
def __init__(self, samplerate=16000, hop_size=160):
|
35 |
-
self.fs = samplerate
|
36 |
-
self.hop = hop_size
|
37 |
-
|
38 |
-
self.f0_bin = 256
|
39 |
-
self.f0_max = 1100.0
|
40 |
-
self.f0_min = 50.0
|
41 |
-
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
42 |
-
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
43 |
-
|
44 |
-
def compute_f0(self, path, f0_method):
|
45 |
-
x = load_audio(path, self.fs)
|
46 |
-
p_len = x.shape[0] // self.hop
|
47 |
-
if f0_method == "pm":
|
48 |
-
time_step = 160 / 16000 * 1000
|
49 |
-
f0_min = 50
|
50 |
-
f0_max = 1100
|
51 |
-
f0 = (
|
52 |
-
parselmouth.Sound(x, self.fs)
|
53 |
-
.to_pitch_ac(
|
54 |
-
time_step=time_step / 1000,
|
55 |
-
voicing_threshold=0.6,
|
56 |
-
pitch_floor=f0_min,
|
57 |
-
pitch_ceiling=f0_max,
|
58 |
-
)
|
59 |
-
.selected_array["frequency"]
|
60 |
-
)
|
61 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
62 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
63 |
-
f0 = np.pad(
|
64 |
-
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
65 |
-
)
|
66 |
-
elif f0_method == "harvest":
|
67 |
-
f0, t = pyworld.harvest(
|
68 |
-
x.astype(np.double),
|
69 |
-
fs=self.fs,
|
70 |
-
f0_ceil=self.f0_max,
|
71 |
-
f0_floor=self.f0_min,
|
72 |
-
frame_period=1000 * self.hop / self.fs,
|
73 |
-
)
|
74 |
-
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
75 |
-
elif f0_method == "dio":
|
76 |
-
f0, t = pyworld.dio(
|
77 |
-
x.astype(np.double),
|
78 |
-
fs=self.fs,
|
79 |
-
f0_ceil=self.f0_max,
|
80 |
-
f0_floor=self.f0_min,
|
81 |
-
frame_period=1000 * self.hop / self.fs,
|
82 |
-
)
|
83 |
-
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
84 |
-
elif f0_method == "rmvpe":
|
85 |
-
if hasattr(self, "model_rmvpe") == False:
|
86 |
-
from infer.lib.rmvpe import RMVPE
|
87 |
-
|
88 |
-
print("Loading rmvpe model")
|
89 |
-
self.model_rmvpe = RMVPE(
|
90 |
-
"assets/rmvpe/rmvpe.pt", is_half=False, device="cpu"
|
91 |
-
)
|
92 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
93 |
-
return f0
|
94 |
-
|
95 |
-
def coarse_f0(self, f0):
|
96 |
-
f0_mel = 1127 * np.log(1 + f0 / 700)
|
97 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
98 |
-
self.f0_bin - 2
|
99 |
-
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
100 |
-
|
101 |
-
# use 0 or 1
|
102 |
-
f0_mel[f0_mel <= 1] = 1
|
103 |
-
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
104 |
-
f0_coarse = np.rint(f0_mel).astype(int)
|
105 |
-
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
106 |
-
f0_coarse.max(),
|
107 |
-
f0_coarse.min(),
|
108 |
-
)
|
109 |
-
return f0_coarse
|
110 |
-
|
111 |
-
def go(self, paths, f0_method):
|
112 |
-
if len(paths) == 0:
|
113 |
-
printt("no-f0-todo")
|
114 |
-
else:
|
115 |
-
printt("todo-f0-%s" % len(paths))
|
116 |
-
n = max(len(paths) // 5, 1) # 每个进程最多打印5条
|
117 |
-
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
118 |
-
try:
|
119 |
-
if idx % n == 0:
|
120 |
-
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
|
121 |
-
if (
|
122 |
-
os.path.exists(opt_path1 + ".npy") == True
|
123 |
-
and os.path.exists(opt_path2 + ".npy") == True
|
124 |
-
):
|
125 |
-
continue
|
126 |
-
featur_pit = self.compute_f0(inp_path, f0_method)
|
127 |
-
np.save(
|
128 |
-
opt_path2,
|
129 |
-
featur_pit,
|
130 |
-
allow_pickle=False,
|
131 |
-
) # nsf
|
132 |
-
coarse_pit = self.coarse_f0(featur_pit)
|
133 |
-
np.save(
|
134 |
-
opt_path1,
|
135 |
-
coarse_pit,
|
136 |
-
allow_pickle=False,
|
137 |
-
) # ori
|
138 |
-
except:
|
139 |
-
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
|
140 |
-
|
141 |
-
|
142 |
-
if __name__ == "__main__":
|
143 |
-
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
144 |
-
# n_p=16
|
145 |
-
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
146 |
-
printt(" ".join(sys.argv))
|
147 |
-
featureInput = FeatureInput()
|
148 |
-
paths = []
|
149 |
-
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
150 |
-
opt_root1 = "%s/2a_f0" % (exp_dir)
|
151 |
-
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
152 |
-
|
153 |
-
os.makedirs(opt_root1, exist_ok=True)
|
154 |
-
os.makedirs(opt_root2, exist_ok=True)
|
155 |
-
for name in sorted(list(os.listdir(inp_root))):
|
156 |
-
inp_path = "%s/%s" % (inp_root, name)
|
157 |
-
if "spec" in inp_path:
|
158 |
-
continue
|
159 |
-
opt_path1 = "%s/%s" % (opt_root1, name)
|
160 |
-
opt_path2 = "%s/%s" % (opt_root2, name)
|
161 |
-
paths.append([inp_path, opt_path1, opt_path2])
|
162 |
-
|
163 |
-
ps = []
|
164 |
-
for i in range(n_p):
|
165 |
-
p = Process(
|
166 |
-
target=featureInput.go,
|
167 |
-
args=(
|
168 |
-
paths[i::n_p],
|
169 |
-
f0method,
|
170 |
-
),
|
171 |
-
)
|
172 |
-
ps.append(p)
|
173 |
-
p.start()
|
174 |
-
for i in range(n_p):
|
175 |
-
ps[i].join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/modules/train/extract/extract_f0_rmvpe.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import traceback
|
4 |
-
|
5 |
-
import parselmouth
|
6 |
-
|
7 |
-
now_dir = os.getcwd()
|
8 |
-
sys.path.append(now_dir)
|
9 |
-
import logging
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import pyworld
|
13 |
-
|
14 |
-
from infer.lib.audio import load_audio
|
15 |
-
|
16 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
17 |
-
|
18 |
-
n_part = int(sys.argv[1])
|
19 |
-
i_part = int(sys.argv[2])
|
20 |
-
i_gpu = sys.argv[3]
|
21 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
22 |
-
exp_dir = sys.argv[4]
|
23 |
-
is_half = sys.argv[5]
|
24 |
-
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
25 |
-
|
26 |
-
|
27 |
-
def printt(strr):
|
28 |
-
print(strr)
|
29 |
-
f.write("%s\n" % strr)
|
30 |
-
f.flush()
|
31 |
-
|
32 |
-
|
33 |
-
class FeatureInput(object):
|
34 |
-
def __init__(self, samplerate=16000, hop_size=160):
|
35 |
-
self.fs = samplerate
|
36 |
-
self.hop = hop_size
|
37 |
-
|
38 |
-
self.f0_bin = 256
|
39 |
-
self.f0_max = 1100.0
|
40 |
-
self.f0_min = 50.0
|
41 |
-
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
42 |
-
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
43 |
-
|
44 |
-
def compute_f0(self, path, f0_method):
|
45 |
-
x = load_audio(path, self.fs)
|
46 |
-
# p_len = x.shape[0] // self.hop
|
47 |
-
if f0_method == "rmvpe":
|
48 |
-
if hasattr(self, "model_rmvpe") == False:
|
49 |
-
from infer.lib.rmvpe import RMVPE
|
50 |
-
|
51 |
-
print("Loading rmvpe model")
|
52 |
-
self.model_rmvpe = RMVPE(
|
53 |
-
"assets/rmvpe/rmvpe.pt", is_half=is_half, device="cuda"
|
54 |
-
)
|
55 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
56 |
-
return f0
|
57 |
-
|
58 |
-
def coarse_f0(self, f0):
|
59 |
-
f0_mel = 1127 * np.log(1 + f0 / 700)
|
60 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
61 |
-
self.f0_bin - 2
|
62 |
-
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
63 |
-
|
64 |
-
# use 0 or 1
|
65 |
-
f0_mel[f0_mel <= 1] = 1
|
66 |
-
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
67 |
-
f0_coarse = np.rint(f0_mel).astype(int)
|
68 |
-
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
69 |
-
f0_coarse.max(),
|
70 |
-
f0_coarse.min(),
|
71 |
-
)
|
72 |
-
return f0_coarse
|
73 |
-
|
74 |
-
def go(self, paths, f0_method):
|
75 |
-
if len(paths) == 0:
|
76 |
-
printt("no-f0-todo")
|
77 |
-
else:
|
78 |
-
printt("todo-f0-%s" % len(paths))
|
79 |
-
n = max(len(paths) // 5, 1) # 每个进程最多打印5条
|
80 |
-
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
81 |
-
try:
|
82 |
-
if idx % n == 0:
|
83 |
-
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
|
84 |
-
if (
|
85 |
-
os.path.exists(opt_path1 + ".npy") == True
|
86 |
-
and os.path.exists(opt_path2 + ".npy") == True
|
87 |
-
):
|
88 |
-
continue
|
89 |
-
featur_pit = self.compute_f0(inp_path, f0_method)
|
90 |
-
np.save(
|
91 |
-
opt_path2,
|
92 |
-
featur_pit,
|
93 |
-
allow_pickle=False,
|
94 |
-
) # nsf
|
95 |
-
coarse_pit = self.coarse_f0(featur_pit)
|
96 |
-
np.save(
|
97 |
-
opt_path1,
|
98 |
-
coarse_pit,
|
99 |
-
allow_pickle=False,
|
100 |
-
) # ori
|
101 |
-
except:
|
102 |
-
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
|
103 |
-
|
104 |
-
|
105 |
-
if __name__ == "__main__":
|
106 |
-
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
107 |
-
# n_p=16
|
108 |
-
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
109 |
-
printt(" ".join(sys.argv))
|
110 |
-
featureInput = FeatureInput()
|
111 |
-
paths = []
|
112 |
-
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
113 |
-
opt_root1 = "%s/2a_f0" % (exp_dir)
|
114 |
-
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
115 |
-
|
116 |
-
os.makedirs(opt_root1, exist_ok=True)
|
117 |
-
os.makedirs(opt_root2, exist_ok=True)
|
118 |
-
for name in sorted(list(os.listdir(inp_root))):
|
119 |
-
inp_path = "%s/%s" % (inp_root, name)
|
120 |
-
if "spec" in inp_path:
|
121 |
-
continue
|
122 |
-
opt_path1 = "%s/%s" % (opt_root1, name)
|
123 |
-
opt_path2 = "%s/%s" % (opt_root2, name)
|
124 |
-
paths.append([inp_path, opt_path1, opt_path2])
|
125 |
-
try:
|
126 |
-
featureInput.go(paths[i_part::n_part], "rmvpe")
|
127 |
-
except:
|
128 |
-
printt("f0_all_fail-%s" % (traceback.format_exc()))
|
129 |
-
# ps = []
|
130 |
-
# for i in range(n_p):
|
131 |
-
# p = Process(
|
132 |
-
# target=featureInput.go,
|
133 |
-
# args=(
|
134 |
-
# paths[i::n_p],
|
135 |
-
# f0method,
|
136 |
-
# ),
|
137 |
-
# )
|
138 |
-
# ps.append(p)
|
139 |
-
# p.start()
|
140 |
-
# for i in range(n_p):
|
141 |
-
# ps[i].join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/modules/train/extract/extract_f0_rmvpe_dml.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import traceback
|
4 |
-
|
5 |
-
import parselmouth
|
6 |
-
|
7 |
-
now_dir = os.getcwd()
|
8 |
-
sys.path.append(now_dir)
|
9 |
-
import logging
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import pyworld
|
13 |
-
|
14 |
-
from infer.lib.audio import load_audio
|
15 |
-
|
16 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
17 |
-
|
18 |
-
exp_dir = sys.argv[1]
|
19 |
-
import torch_directml
|
20 |
-
|
21 |
-
device = torch_directml.device(torch_directml.default_device())
|
22 |
-
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
23 |
-
|
24 |
-
|
25 |
-
def printt(strr):
|
26 |
-
print(strr)
|
27 |
-
f.write("%s\n" % strr)
|
28 |
-
f.flush()
|
29 |
-
|
30 |
-
|
31 |
-
class FeatureInput(object):
|
32 |
-
def __init__(self, samplerate=16000, hop_size=160):
|
33 |
-
self.fs = samplerate
|
34 |
-
self.hop = hop_size
|
35 |
-
|
36 |
-
self.f0_bin = 256
|
37 |
-
self.f0_max = 1100.0
|
38 |
-
self.f0_min = 50.0
|
39 |
-
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
40 |
-
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
41 |
-
|
42 |
-
def compute_f0(self, path, f0_method):
|
43 |
-
x = load_audio(path, self.fs)
|
44 |
-
# p_len = x.shape[0] // self.hop
|
45 |
-
if f0_method == "rmvpe":
|
46 |
-
if hasattr(self, "model_rmvpe") == False:
|
47 |
-
from infer.lib.rmvpe import RMVPE
|
48 |
-
|
49 |
-
print("Loading rmvpe model")
|
50 |
-
self.model_rmvpe = RMVPE(
|
51 |
-
"assets/rmvpe/rmvpe.pt", is_half=False, device=device
|
52 |
-
)
|
53 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
54 |
-
return f0
|
55 |
-
|
56 |
-
def coarse_f0(self, f0):
|
57 |
-
f0_mel = 1127 * np.log(1 + f0 / 700)
|
58 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
59 |
-
self.f0_bin - 2
|
60 |
-
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
61 |
-
|
62 |
-
# use 0 or 1
|
63 |
-
f0_mel[f0_mel <= 1] = 1
|
64 |
-
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
65 |
-
f0_coarse = np.rint(f0_mel).astype(int)
|
66 |
-
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
67 |
-
f0_coarse.max(),
|
68 |
-
f0_coarse.min(),
|
69 |
-
)
|
70 |
-
return f0_coarse
|
71 |
-
|
72 |
-
def go(self, paths, f0_method):
|
73 |
-
if len(paths) == 0:
|
74 |
-
printt("no-f0-todo")
|
75 |
-
else:
|
76 |
-
printt("todo-f0-%s" % len(paths))
|
77 |
-
n = max(len(paths) // 5, 1) # 每个进程最多打印5条
|
78 |
-
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
79 |
-
try:
|
80 |
-
if idx % n == 0:
|
81 |
-
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
|
82 |
-
if (
|
83 |
-
os.path.exists(opt_path1 + ".npy") == True
|
84 |
-
and os.path.exists(opt_path2 + ".npy") == True
|
85 |
-
):
|
86 |
-
continue
|
87 |
-
featur_pit = self.compute_f0(inp_path, f0_method)
|
88 |
-
np.save(
|
89 |
-
opt_path2,
|
90 |
-
featur_pit,
|
91 |
-
allow_pickle=False,
|
92 |
-
) # nsf
|
93 |
-
coarse_pit = self.coarse_f0(featur_pit)
|
94 |
-
np.save(
|
95 |
-
opt_path1,
|
96 |
-
coarse_pit,
|
97 |
-
allow_pickle=False,
|
98 |
-
) # ori
|
99 |
-
except:
|
100 |
-
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
|
101 |
-
|
102 |
-
|
103 |
-
if __name__ == "__main__":
|
104 |
-
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
105 |
-
# n_p=16
|
106 |
-
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
107 |
-
printt(" ".join(sys.argv))
|
108 |
-
featureInput = FeatureInput()
|
109 |
-
paths = []
|
110 |
-
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
111 |
-
opt_root1 = "%s/2a_f0" % (exp_dir)
|
112 |
-
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
113 |
-
|
114 |
-
os.makedirs(opt_root1, exist_ok=True)
|
115 |
-
os.makedirs(opt_root2, exist_ok=True)
|
116 |
-
for name in sorted(list(os.listdir(inp_root))):
|
117 |
-
inp_path = "%s/%s" % (inp_root, name)
|
118 |
-
if "spec" in inp_path:
|
119 |
-
continue
|
120 |
-
opt_path1 = "%s/%s" % (opt_root1, name)
|
121 |
-
opt_path2 = "%s/%s" % (opt_root2, name)
|
122 |
-
paths.append([inp_path, opt_path1, opt_path2])
|
123 |
-
try:
|
124 |
-
featureInput.go(paths, "rmvpe")
|
125 |
-
except:
|
126 |
-
printt("f0_all_fail-%s" % (traceback.format_exc()))
|
127 |
-
# ps = []
|
128 |
-
# for i in range(n_p):
|
129 |
-
# p = Process(
|
130 |
-
# target=featureInput.go,
|
131 |
-
# args=(
|
132 |
-
# paths[i::n_p],
|
133 |
-
# f0method,
|
134 |
-
# ),
|
135 |
-
# )
|
136 |
-
# ps.append(p)
|
137 |
-
# p.start()
|
138 |
-
# for i in range(n_p):
|
139 |
-
# ps[i].join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/modules/train/extract_feature_print.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import traceback
|
4 |
-
|
5 |
-
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
6 |
-
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
|
7 |
-
|
8 |
-
device = sys.argv[1]
|
9 |
-
n_part = int(sys.argv[2])
|
10 |
-
i_part = int(sys.argv[3])
|
11 |
-
if len(sys.argv) == 7:
|
12 |
-
exp_dir = sys.argv[4]
|
13 |
-
version = sys.argv[5]
|
14 |
-
is_half = sys.argv[6].lower() == "true"
|
15 |
-
else:
|
16 |
-
i_gpu = sys.argv[4]
|
17 |
-
exp_dir = sys.argv[5]
|
18 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
19 |
-
version = sys.argv[6]
|
20 |
-
is_half = sys.argv[7].lower() == "true"
|
21 |
-
import fairseq
|
22 |
-
import numpy as np
|
23 |
-
import soundfile as sf
|
24 |
-
import torch
|
25 |
-
import torch.nn.functional as F
|
26 |
-
|
27 |
-
if "privateuseone" not in device:
|
28 |
-
device = "cpu"
|
29 |
-
if torch.cuda.is_available():
|
30 |
-
device = "cuda"
|
31 |
-
elif torch.backends.mps.is_available():
|
32 |
-
device = "mps"
|
33 |
-
else:
|
34 |
-
import torch_directml
|
35 |
-
|
36 |
-
device = torch_directml.device(torch_directml.default_device())
|
37 |
-
|
38 |
-
def forward_dml(ctx, x, scale):
|
39 |
-
ctx.scale = scale
|
40 |
-
res = x.clone().detach()
|
41 |
-
return res
|
42 |
-
|
43 |
-
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
44 |
-
|
45 |
-
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
46 |
-
|
47 |
-
|
48 |
-
def printt(strr):
|
49 |
-
print(strr)
|
50 |
-
f.write("%s\n" % strr)
|
51 |
-
f.flush()
|
52 |
-
|
53 |
-
|
54 |
-
printt(" ".join(sys.argv))
|
55 |
-
model_path = "assets/hubert/hubert_base.pt"
|
56 |
-
|
57 |
-
printt("exp_dir: " + exp_dir)
|
58 |
-
wavPath = "%s/1_16k_wavs" % exp_dir
|
59 |
-
outPath = (
|
60 |
-
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
|
61 |
-
)
|
62 |
-
os.makedirs(outPath, exist_ok=True)
|
63 |
-
|
64 |
-
|
65 |
-
# wave must be 16k, hop_size=320
|
66 |
-
def readwave(wav_path, normalize=False):
|
67 |
-
wav, sr = sf.read(wav_path)
|
68 |
-
assert sr == 16000
|
69 |
-
feats = torch.from_numpy(wav).float()
|
70 |
-
if feats.dim() == 2: # double channels
|
71 |
-
feats = feats.mean(-1)
|
72 |
-
assert feats.dim() == 1, feats.dim()
|
73 |
-
if normalize:
|
74 |
-
with torch.no_grad():
|
75 |
-
feats = F.layer_norm(feats, feats.shape)
|
76 |
-
feats = feats.view(1, -1)
|
77 |
-
return feats
|
78 |
-
|
79 |
-
|
80 |
-
# HuBERT model
|
81 |
-
printt("load model(s) from {}".format(model_path))
|
82 |
-
# if hubert model is exist
|
83 |
-
if os.access(model_path, os.F_OK) == False:
|
84 |
-
printt(
|
85 |
-
"Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main"
|
86 |
-
% model_path
|
87 |
-
)
|
88 |
-
exit(0)
|
89 |
-
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
90 |
-
[model_path],
|
91 |
-
suffix="",
|
92 |
-
)
|
93 |
-
model = models[0]
|
94 |
-
model = model.to(device)
|
95 |
-
printt("move model to %s" % device)
|
96 |
-
if is_half:
|
97 |
-
if device not in ["mps", "cpu"]:
|
98 |
-
model = model.half()
|
99 |
-
model.eval()
|
100 |
-
|
101 |
-
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
102 |
-
n = max(1, len(todo) // 10) # 最多打印十条
|
103 |
-
if len(todo) == 0:
|
104 |
-
printt("no-feature-todo")
|
105 |
-
else:
|
106 |
-
printt("all-feature-%s" % len(todo))
|
107 |
-
for idx, file in enumerate(todo):
|
108 |
-
try:
|
109 |
-
if file.endswith(".wav"):
|
110 |
-
wav_path = "%s/%s" % (wavPath, file)
|
111 |
-
out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))
|
112 |
-
|
113 |
-
if os.path.exists(out_path):
|
114 |
-
continue
|
115 |
-
|
116 |
-
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
|
117 |
-
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
118 |
-
inputs = {
|
119 |
-
"source": (
|
120 |
-
feats.half().to(device)
|
121 |
-
if is_half and device not in ["mps", "cpu"]
|
122 |
-
else feats.to(device)
|
123 |
-
),
|
124 |
-
"padding_mask": padding_mask.to(device),
|
125 |
-
"output_layer": 9 if version == "v1" else 12, # layer 9
|
126 |
-
}
|
127 |
-
with torch.no_grad():
|
128 |
-
logits = model.extract_features(**inputs)
|
129 |
-
feats = (
|
130 |
-
model.final_proj(logits[0]) if version == "v1" else logits[0]
|
131 |
-
)
|
132 |
-
|
133 |
-
feats = feats.squeeze(0).float().cpu().numpy()
|
134 |
-
if np.isnan(feats).sum() == 0:
|
135 |
-
np.save(out_path, feats, allow_pickle=False)
|
136 |
-
else:
|
137 |
-
printt("%s-contains nan" % file)
|
138 |
-
if idx % n == 0:
|
139 |
-
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape))
|
140 |
-
except:
|
141 |
-
printt(traceback.format_exc())
|
142 |
-
printt("all-feature-done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/modules/train/preprocess.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
import multiprocessing
|
2 |
-
import os
|
3 |
-
import sys
|
4 |
-
|
5 |
-
from scipy import signal
|
6 |
-
|
7 |
-
now_dir = os.getcwd()
|
8 |
-
sys.path.append(now_dir)
|
9 |
-
print(*sys.argv[1:])
|
10 |
-
inp_root = sys.argv[1]
|
11 |
-
sr = int(sys.argv[2])
|
12 |
-
n_p = int(sys.argv[3])
|
13 |
-
exp_dir = sys.argv[4]
|
14 |
-
noparallel = sys.argv[5] == "True"
|
15 |
-
per = float(sys.argv[6])
|
16 |
-
import os
|
17 |
-
import traceback
|
18 |
-
|
19 |
-
import librosa
|
20 |
-
import numpy as np
|
21 |
-
from scipy.io import wavfile
|
22 |
-
|
23 |
-
from infer.lib.audio import load_audio
|
24 |
-
from infer.lib.slicer2 import Slicer
|
25 |
-
|
26 |
-
f = open("%s/preprocess.log" % exp_dir, "a+")
|
27 |
-
|
28 |
-
|
29 |
-
def println(strr):
|
30 |
-
print(strr)
|
31 |
-
f.write("%s\n" % strr)
|
32 |
-
f.flush()
|
33 |
-
|
34 |
-
|
35 |
-
class PreProcess:
|
36 |
-
def __init__(self, sr, exp_dir, per=3.7):
|
37 |
-
self.slicer = Slicer(
|
38 |
-
sr=sr,
|
39 |
-
threshold=-42,
|
40 |
-
min_length=1500,
|
41 |
-
min_interval=400,
|
42 |
-
hop_size=15,
|
43 |
-
max_sil_kept=500,
|
44 |
-
)
|
45 |
-
self.sr = sr
|
46 |
-
self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
|
47 |
-
self.per = per
|
48 |
-
self.overlap = 0.3
|
49 |
-
self.tail = self.per + self.overlap
|
50 |
-
self.max = 0.9
|
51 |
-
self.alpha = 0.75
|
52 |
-
self.exp_dir = exp_dir
|
53 |
-
self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
|
54 |
-
self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
|
55 |
-
os.makedirs(self.exp_dir, exist_ok=True)
|
56 |
-
os.makedirs(self.gt_wavs_dir, exist_ok=True)
|
57 |
-
os.makedirs(self.wavs16k_dir, exist_ok=True)
|
58 |
-
|
59 |
-
def norm_write(self, tmp_audio, idx0, idx1):
|
60 |
-
tmp_max = np.abs(tmp_audio).max()
|
61 |
-
if tmp_max > 2.5:
|
62 |
-
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
63 |
-
return
|
64 |
-
tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
|
65 |
-
1 - self.alpha
|
66 |
-
) * tmp_audio
|
67 |
-
wavfile.write(
|
68 |
-
"%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
|
69 |
-
self.sr,
|
70 |
-
tmp_audio.astype(np.float32),
|
71 |
-
)
|
72 |
-
tmp_audio = librosa.resample(
|
73 |
-
tmp_audio, orig_sr=self.sr, target_sr=16000
|
74 |
-
) # , res_type="soxr_vhq"
|
75 |
-
wavfile.write(
|
76 |
-
"%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
|
77 |
-
16000,
|
78 |
-
tmp_audio.astype(np.float32),
|
79 |
-
)
|
80 |
-
|
81 |
-
def pipeline(self, path, idx0):
|
82 |
-
try:
|
83 |
-
audio = load_audio(path, self.sr)
|
84 |
-
# zero phased digital filter cause pre-ringing noise...
|
85 |
-
# audio = signal.filtfilt(self.bh, self.ah, audio)
|
86 |
-
audio = signal.lfilter(self.bh, self.ah, audio)
|
87 |
-
|
88 |
-
idx1 = 0
|
89 |
-
for audio in self.slicer.slice(audio):
|
90 |
-
i = 0
|
91 |
-
while 1:
|
92 |
-
start = int(self.sr * (self.per - self.overlap) * i)
|
93 |
-
i += 1
|
94 |
-
if len(audio[start:]) > self.tail * self.sr:
|
95 |
-
tmp_audio = audio[start : start + int(self.per * self.sr)]
|
96 |
-
self.norm_write(tmp_audio, idx0, idx1)
|
97 |
-
idx1 += 1
|
98 |
-
else:
|
99 |
-
tmp_audio = audio[start:]
|
100 |
-
idx1 += 1
|
101 |
-
break
|
102 |
-
self.norm_write(tmp_audio, idx0, idx1)
|
103 |
-
println("%s\t-> Success" % path)
|
104 |
-
except:
|
105 |
-
println("%s\t-> %s" % (path, traceback.format_exc()))
|
106 |
-
|
107 |
-
def pipeline_mp(self, infos):
|
108 |
-
for path, idx0 in infos:
|
109 |
-
self.pipeline(path, idx0)
|
110 |
-
|
111 |
-
def pipeline_mp_inp_dir(self, inp_root, n_p):
|
112 |
-
try:
|
113 |
-
infos = [
|
114 |
-
("%s/%s" % (inp_root, name), idx)
|
115 |
-
for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
|
116 |
-
]
|
117 |
-
if noparallel:
|
118 |
-
for i in range(n_p):
|
119 |
-
self.pipeline_mp(infos[i::n_p])
|
120 |
-
else:
|
121 |
-
ps = []
|
122 |
-
for i in range(n_p):
|
123 |
-
p = multiprocessing.Process(
|
124 |
-
target=self.pipeline_mp, args=(infos[i::n_p],)
|
125 |
-
)
|
126 |
-
ps.append(p)
|
127 |
-
p.start()
|
128 |
-
for i in range(n_p):
|
129 |
-
ps[i].join()
|
130 |
-
except:
|
131 |
-
println("Fail. %s" % traceback.format_exc())
|
132 |
-
|
133 |
-
|
134 |
-
def preprocess_trainset(inp_root, sr, n_p, exp_dir, per):
|
135 |
-
pp = PreProcess(sr, exp_dir, per)
|
136 |
-
println("start preprocess")
|
137 |
-
pp.pipeline_mp_inp_dir(inp_root, n_p)
|
138 |
-
println("end preprocess")
|
139 |
-
|
140 |
-
|
141 |
-
if __name__ == "__main__":
|
142 |
-
preprocess_trainset(inp_root, sr, n_p, exp_dir, per)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/modules/train/train.py
DELETED
@@ -1,640 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import logging
|
4 |
-
|
5 |
-
logger = logging.getLogger(__name__)
|
6 |
-
|
7 |
-
now_dir = os.getcwd()
|
8 |
-
sys.path.append(os.path.join(now_dir))
|
9 |
-
|
10 |
-
import datetime
|
11 |
-
|
12 |
-
from infer.lib.train import utils
|
13 |
-
|
14 |
-
hps = utils.get_hparams()
|
15 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
16 |
-
n_gpus = len(hps.gpus.split("-"))
|
17 |
-
from random import randint, shuffle
|
18 |
-
|
19 |
-
import torch
|
20 |
-
|
21 |
-
try:
|
22 |
-
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
23 |
-
|
24 |
-
if torch.xpu.is_available():
|
25 |
-
from infer.modules.ipex import ipex_init
|
26 |
-
from infer.modules.ipex.gradscaler import gradscaler_init
|
27 |
-
from torch.xpu.amp import autocast
|
28 |
-
|
29 |
-
GradScaler = gradscaler_init()
|
30 |
-
ipex_init()
|
31 |
-
else:
|
32 |
-
from torch.cuda.amp import GradScaler, autocast
|
33 |
-
except Exception:
|
34 |
-
from torch.cuda.amp import GradScaler, autocast
|
35 |
-
|
36 |
-
torch.backends.cudnn.deterministic = False
|
37 |
-
torch.backends.cudnn.benchmark = False
|
38 |
-
from time import sleep
|
39 |
-
from time import time as ttime
|
40 |
-
|
41 |
-
import torch.distributed as dist
|
42 |
-
import torch.multiprocessing as mp
|
43 |
-
from torch.nn import functional as F
|
44 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
45 |
-
from torch.utils.data import DataLoader
|
46 |
-
from torch.utils.tensorboard import SummaryWriter
|
47 |
-
|
48 |
-
from infer.lib.infer_pack import commons
|
49 |
-
from infer.lib.train.data_utils import (
|
50 |
-
DistributedBucketSampler,
|
51 |
-
TextAudioCollate,
|
52 |
-
TextAudioCollateMultiNSFsid,
|
53 |
-
TextAudioLoader,
|
54 |
-
TextAudioLoaderMultiNSFsid,
|
55 |
-
)
|
56 |
-
|
57 |
-
if hps.version == "v1":
|
58 |
-
from infer.lib.infer_pack.models import MultiPeriodDiscriminator
|
59 |
-
from infer.lib.infer_pack.models import SynthesizerTrnMs256NSFsid as RVC_Model_f0
|
60 |
-
from infer.lib.infer_pack.models import (
|
61 |
-
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
62 |
-
)
|
63 |
-
else:
|
64 |
-
from infer.lib.infer_pack.models import (
|
65 |
-
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
|
66 |
-
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
|
67 |
-
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
|
68 |
-
)
|
69 |
-
|
70 |
-
from infer.lib.train.losses import (
|
71 |
-
discriminator_loss,
|
72 |
-
feature_loss,
|
73 |
-
generator_loss,
|
74 |
-
kl_loss,
|
75 |
-
)
|
76 |
-
from infer.lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
77 |
-
from infer.lib.train.process_ckpt import savee
|
78 |
-
|
79 |
-
global_step = 0
|
80 |
-
|
81 |
-
|
82 |
-
class EpochRecorder:
|
83 |
-
def __init__(self):
|
84 |
-
self.last_time = ttime()
|
85 |
-
|
86 |
-
def record(self):
|
87 |
-
now_time = ttime()
|
88 |
-
elapsed_time = now_time - self.last_time
|
89 |
-
self.last_time = now_time
|
90 |
-
elapsed_time_str = str(datetime.timedelta(seconds=elapsed_time))
|
91 |
-
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
92 |
-
return f"[{current_time}] | ({elapsed_time_str})"
|
93 |
-
|
94 |
-
|
95 |
-
def main():
|
96 |
-
n_gpus = torch.cuda.device_count()
|
97 |
-
|
98 |
-
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
|
99 |
-
n_gpus = 1
|
100 |
-
if n_gpus < 1:
|
101 |
-
# patch to unblock people without gpus. there is probably a better way.
|
102 |
-
print("NO GPU DETECTED: falling back to CPU - this may take a while")
|
103 |
-
n_gpus = 1
|
104 |
-
os.environ["MASTER_ADDR"] = "localhost"
|
105 |
-
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
106 |
-
children = []
|
107 |
-
logger = utils.get_logger(hps.model_dir)
|
108 |
-
for i in range(n_gpus):
|
109 |
-
subproc = mp.Process(
|
110 |
-
target=run,
|
111 |
-
args=(i, n_gpus, hps, logger),
|
112 |
-
)
|
113 |
-
children.append(subproc)
|
114 |
-
subproc.start()
|
115 |
-
|
116 |
-
for i in range(n_gpus):
|
117 |
-
children[i].join()
|
118 |
-
|
119 |
-
|
120 |
-
def run(rank, n_gpus, hps, logger: logging.Logger):
|
121 |
-
global global_step
|
122 |
-
if rank == 0:
|
123 |
-
# logger = utils.get_logger(hps.model_dir)
|
124 |
-
logger.info(hps)
|
125 |
-
# utils.check_git_hash(hps.model_dir)
|
126 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
127 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
128 |
-
|
129 |
-
dist.init_process_group(
|
130 |
-
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
|
131 |
-
)
|
132 |
-
torch.manual_seed(hps.train.seed)
|
133 |
-
if torch.cuda.is_available():
|
134 |
-
torch.cuda.set_device(rank)
|
135 |
-
|
136 |
-
if hps.if_f0 == 1:
|
137 |
-
train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
|
138 |
-
else:
|
139 |
-
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
140 |
-
train_sampler = DistributedBucketSampler(
|
141 |
-
train_dataset,
|
142 |
-
hps.train.batch_size * n_gpus,
|
143 |
-
# [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200,1400], # 16s
|
144 |
-
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
|
145 |
-
num_replicas=n_gpus,
|
146 |
-
rank=rank,
|
147 |
-
shuffle=True,
|
148 |
-
)
|
149 |
-
# It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.
|
150 |
-
# num_workers=8 -> num_workers=4
|
151 |
-
if hps.if_f0 == 1:
|
152 |
-
collate_fn = TextAudioCollateMultiNSFsid()
|
153 |
-
else:
|
154 |
-
collate_fn = TextAudioCollate()
|
155 |
-
train_loader = DataLoader(
|
156 |
-
train_dataset,
|
157 |
-
num_workers=4,
|
158 |
-
shuffle=False,
|
159 |
-
pin_memory=True,
|
160 |
-
collate_fn=collate_fn,
|
161 |
-
batch_sampler=train_sampler,
|
162 |
-
persistent_workers=True,
|
163 |
-
prefetch_factor=8,
|
164 |
-
)
|
165 |
-
if hps.if_f0 == 1:
|
166 |
-
net_g = RVC_Model_f0(
|
167 |
-
hps.data.filter_length // 2 + 1,
|
168 |
-
hps.train.segment_size // hps.data.hop_length,
|
169 |
-
**hps.model,
|
170 |
-
is_half=hps.train.fp16_run,
|
171 |
-
sr=hps.sample_rate,
|
172 |
-
)
|
173 |
-
else:
|
174 |
-
net_g = RVC_Model_nof0(
|
175 |
-
hps.data.filter_length // 2 + 1,
|
176 |
-
hps.train.segment_size // hps.data.hop_length,
|
177 |
-
**hps.model,
|
178 |
-
is_half=hps.train.fp16_run,
|
179 |
-
)
|
180 |
-
if torch.cuda.is_available():
|
181 |
-
net_g = net_g.cuda(rank)
|
182 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
|
183 |
-
if torch.cuda.is_available():
|
184 |
-
net_d = net_d.cuda(rank)
|
185 |
-
optim_g = torch.optim.AdamW(
|
186 |
-
net_g.parameters(),
|
187 |
-
hps.train.learning_rate,
|
188 |
-
betas=hps.train.betas,
|
189 |
-
eps=hps.train.eps,
|
190 |
-
)
|
191 |
-
optim_d = torch.optim.AdamW(
|
192 |
-
net_d.parameters(),
|
193 |
-
hps.train.learning_rate,
|
194 |
-
betas=hps.train.betas,
|
195 |
-
eps=hps.train.eps,
|
196 |
-
)
|
197 |
-
# net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
198 |
-
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
199 |
-
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
200 |
-
pass
|
201 |
-
elif torch.cuda.is_available():
|
202 |
-
net_g = DDP(net_g, device_ids=[rank])
|
203 |
-
net_d = DDP(net_d, device_ids=[rank])
|
204 |
-
else:
|
205 |
-
net_g = DDP(net_g)
|
206 |
-
net_d = DDP(net_d)
|
207 |
-
|
208 |
-
try: # 如果能加载自动resume
|
209 |
-
_, _, _, epoch_str = utils.load_checkpoint(
|
210 |
-
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
|
211 |
-
) # D多半加载没事
|
212 |
-
if rank == 0:
|
213 |
-
logger.info("loaded D")
|
214 |
-
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
215 |
-
_, _, _, epoch_str = utils.load_checkpoint(
|
216 |
-
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
217 |
-
)
|
218 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
219 |
-
# epoch_str = 1
|
220 |
-
# global_step = 0
|
221 |
-
except: # 如果首次不能加载,加载pretrain
|
222 |
-
# traceback.print_exc()
|
223 |
-
epoch_str = 1
|
224 |
-
global_step = 0
|
225 |
-
if hps.pretrainG != "":
|
226 |
-
if rank == 0:
|
227 |
-
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
228 |
-
if hasattr(net_g, "module"):
|
229 |
-
logger.info(
|
230 |
-
net_g.module.load_state_dict(
|
231 |
-
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
232 |
-
)
|
233 |
-
) ##测试不加载优化器
|
234 |
-
else:
|
235 |
-
logger.info(
|
236 |
-
net_g.load_state_dict(
|
237 |
-
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
238 |
-
)
|
239 |
-
) ##测试不加载优化器
|
240 |
-
if hps.pretrainD != "":
|
241 |
-
if rank == 0:
|
242 |
-
logger.info("loaded pretrained %s" % (hps.pretrainD))
|
243 |
-
if hasattr(net_d, "module"):
|
244 |
-
logger.info(
|
245 |
-
net_d.module.load_state_dict(
|
246 |
-
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
247 |
-
)
|
248 |
-
)
|
249 |
-
else:
|
250 |
-
logger.info(
|
251 |
-
net_d.load_state_dict(
|
252 |
-
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
253 |
-
)
|
254 |
-
)
|
255 |
-
|
256 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
257 |
-
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
258 |
-
)
|
259 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
260 |
-
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
261 |
-
)
|
262 |
-
|
263 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
264 |
-
|
265 |
-
cache = []
|
266 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
267 |
-
if rank == 0:
|
268 |
-
train_and_evaluate(
|
269 |
-
rank,
|
270 |
-
epoch,
|
271 |
-
hps,
|
272 |
-
[net_g, net_d],
|
273 |
-
[optim_g, optim_d],
|
274 |
-
[scheduler_g, scheduler_d],
|
275 |
-
scaler,
|
276 |
-
[train_loader, None],
|
277 |
-
logger,
|
278 |
-
[writer, writer_eval],
|
279 |
-
cache,
|
280 |
-
)
|
281 |
-
else:
|
282 |
-
train_and_evaluate(
|
283 |
-
rank,
|
284 |
-
epoch,
|
285 |
-
hps,
|
286 |
-
[net_g, net_d],
|
287 |
-
[optim_g, optim_d],
|
288 |
-
[scheduler_g, scheduler_d],
|
289 |
-
scaler,
|
290 |
-
[train_loader, None],
|
291 |
-
None,
|
292 |
-
None,
|
293 |
-
cache,
|
294 |
-
)
|
295 |
-
scheduler_g.step()
|
296 |
-
scheduler_d.step()
|
297 |
-
|
298 |
-
|
299 |
-
def train_and_evaluate(
|
300 |
-
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, cache
|
301 |
-
):
|
302 |
-
net_g, net_d = nets
|
303 |
-
optim_g, optim_d = optims
|
304 |
-
train_loader, eval_loader = loaders
|
305 |
-
if writers is not None:
|
306 |
-
writer, writer_eval = writers
|
307 |
-
|
308 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
309 |
-
global global_step
|
310 |
-
|
311 |
-
net_g.train()
|
312 |
-
net_d.train()
|
313 |
-
|
314 |
-
# Prepare data iterator
|
315 |
-
if hps.if_cache_data_in_gpu == True:
|
316 |
-
# Use Cache
|
317 |
-
data_iterator = cache
|
318 |
-
if cache == []:
|
319 |
-
# Make new cache
|
320 |
-
for batch_idx, info in enumerate(train_loader):
|
321 |
-
# Unpack
|
322 |
-
if hps.if_f0 == 1:
|
323 |
-
(
|
324 |
-
phone,
|
325 |
-
phone_lengths,
|
326 |
-
pitch,
|
327 |
-
pitchf,
|
328 |
-
spec,
|
329 |
-
spec_lengths,
|
330 |
-
wave,
|
331 |
-
wave_lengths,
|
332 |
-
sid,
|
333 |
-
) = info
|
334 |
-
else:
|
335 |
-
(
|
336 |
-
phone,
|
337 |
-
phone_lengths,
|
338 |
-
spec,
|
339 |
-
spec_lengths,
|
340 |
-
wave,
|
341 |
-
wave_lengths,
|
342 |
-
sid,
|
343 |
-
) = info
|
344 |
-
# Load on CUDA
|
345 |
-
if torch.cuda.is_available():
|
346 |
-
phone = phone.cuda(rank, non_blocking=True)
|
347 |
-
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
|
348 |
-
if hps.if_f0 == 1:
|
349 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
350 |
-
pitchf = pitchf.cuda(rank, non_blocking=True)
|
351 |
-
sid = sid.cuda(rank, non_blocking=True)
|
352 |
-
spec = spec.cuda(rank, non_blocking=True)
|
353 |
-
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
|
354 |
-
wave = wave.cuda(rank, non_blocking=True)
|
355 |
-
wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
|
356 |
-
# Cache on list
|
357 |
-
if hps.if_f0 == 1:
|
358 |
-
cache.append(
|
359 |
-
(
|
360 |
-
batch_idx,
|
361 |
-
(
|
362 |
-
phone,
|
363 |
-
phone_lengths,
|
364 |
-
pitch,
|
365 |
-
pitchf,
|
366 |
-
spec,
|
367 |
-
spec_lengths,
|
368 |
-
wave,
|
369 |
-
wave_lengths,
|
370 |
-
sid,
|
371 |
-
),
|
372 |
-
)
|
373 |
-
)
|
374 |
-
else:
|
375 |
-
cache.append(
|
376 |
-
(
|
377 |
-
batch_idx,
|
378 |
-
(
|
379 |
-
phone,
|
380 |
-
phone_lengths,
|
381 |
-
spec,
|
382 |
-
spec_lengths,
|
383 |
-
wave,
|
384 |
-
wave_lengths,
|
385 |
-
sid,
|
386 |
-
),
|
387 |
-
)
|
388 |
-
)
|
389 |
-
else:
|
390 |
-
# Load shuffled cache
|
391 |
-
shuffle(cache)
|
392 |
-
else:
|
393 |
-
# Loader
|
394 |
-
data_iterator = enumerate(train_loader)
|
395 |
-
|
396 |
-
# Run steps
|
397 |
-
epoch_recorder = EpochRecorder()
|
398 |
-
for batch_idx, info in data_iterator:
|
399 |
-
# Data
|
400 |
-
## Unpack
|
401 |
-
if hps.if_f0 == 1:
|
402 |
-
(
|
403 |
-
phone,
|
404 |
-
phone_lengths,
|
405 |
-
pitch,
|
406 |
-
pitchf,
|
407 |
-
spec,
|
408 |
-
spec_lengths,
|
409 |
-
wave,
|
410 |
-
wave_lengths,
|
411 |
-
sid,
|
412 |
-
) = info
|
413 |
-
else:
|
414 |
-
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
|
415 |
-
## Load on CUDA
|
416 |
-
if (hps.if_cache_data_in_gpu == False) and torch.cuda.is_available():
|
417 |
-
phone = phone.cuda(rank, non_blocking=True)
|
418 |
-
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
|
419 |
-
if hps.if_f0 == 1:
|
420 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
421 |
-
pitchf = pitchf.cuda(rank, non_blocking=True)
|
422 |
-
sid = sid.cuda(rank, non_blocking=True)
|
423 |
-
spec = spec.cuda(rank, non_blocking=True)
|
424 |
-
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
|
425 |
-
wave = wave.cuda(rank, non_blocking=True)
|
426 |
-
# wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
|
427 |
-
|
428 |
-
# Calculate
|
429 |
-
with autocast(enabled=hps.train.fp16_run):
|
430 |
-
if hps.if_f0 == 1:
|
431 |
-
(
|
432 |
-
y_hat,
|
433 |
-
ids_slice,
|
434 |
-
x_mask,
|
435 |
-
z_mask,
|
436 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
437 |
-
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
|
438 |
-
else:
|
439 |
-
(
|
440 |
-
y_hat,
|
441 |
-
ids_slice,
|
442 |
-
x_mask,
|
443 |
-
z_mask,
|
444 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
445 |
-
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
|
446 |
-
mel = spec_to_mel_torch(
|
447 |
-
spec,
|
448 |
-
hps.data.filter_length,
|
449 |
-
hps.data.n_mel_channels,
|
450 |
-
hps.data.sampling_rate,
|
451 |
-
hps.data.mel_fmin,
|
452 |
-
hps.data.mel_fmax,
|
453 |
-
)
|
454 |
-
y_mel = commons.slice_segments(
|
455 |
-
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
456 |
-
)
|
457 |
-
with autocast(enabled=False):
|
458 |
-
y_hat_mel = mel_spectrogram_torch(
|
459 |
-
y_hat.float().squeeze(1),
|
460 |
-
hps.data.filter_length,
|
461 |
-
hps.data.n_mel_channels,
|
462 |
-
hps.data.sampling_rate,
|
463 |
-
hps.data.hop_length,
|
464 |
-
hps.data.win_length,
|
465 |
-
hps.data.mel_fmin,
|
466 |
-
hps.data.mel_fmax,
|
467 |
-
)
|
468 |
-
if hps.train.fp16_run == True:
|
469 |
-
y_hat_mel = y_hat_mel.half()
|
470 |
-
wave = commons.slice_segments(
|
471 |
-
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
|
472 |
-
) # slice
|
473 |
-
|
474 |
-
# Discriminator
|
475 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
|
476 |
-
with autocast(enabled=False):
|
477 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
478 |
-
y_d_hat_r, y_d_hat_g
|
479 |
-
)
|
480 |
-
optim_d.zero_grad()
|
481 |
-
scaler.scale(loss_disc).backward()
|
482 |
-
scaler.unscale_(optim_d)
|
483 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
484 |
-
scaler.step(optim_d)
|
485 |
-
|
486 |
-
with autocast(enabled=hps.train.fp16_run):
|
487 |
-
# Generator
|
488 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
|
489 |
-
with autocast(enabled=False):
|
490 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
491 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
492 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
493 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
494 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
495 |
-
optim_g.zero_grad()
|
496 |
-
scaler.scale(loss_gen_all).backward()
|
497 |
-
scaler.unscale_(optim_g)
|
498 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
499 |
-
scaler.step(optim_g)
|
500 |
-
scaler.update()
|
501 |
-
|
502 |
-
if rank == 0:
|
503 |
-
if global_step % hps.train.log_interval == 0:
|
504 |
-
lr = optim_g.param_groups[0]["lr"]
|
505 |
-
logger.info(
|
506 |
-
"Train Epoch: {} [{:.0f}%]".format(
|
507 |
-
epoch, 100.0 * batch_idx / len(train_loader)
|
508 |
-
)
|
509 |
-
)
|
510 |
-
# Amor For Tensorboard display
|
511 |
-
if loss_mel > 75:
|
512 |
-
loss_mel = 75
|
513 |
-
if loss_kl > 9:
|
514 |
-
loss_kl = 9
|
515 |
-
|
516 |
-
logger.info([global_step, lr])
|
517 |
-
logger.info(
|
518 |
-
f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
519 |
-
)
|
520 |
-
scalar_dict = {
|
521 |
-
"loss/g/total": loss_gen_all,
|
522 |
-
"loss/d/total": loss_disc,
|
523 |
-
"learning_rate": lr,
|
524 |
-
"grad_norm_d": grad_norm_d,
|
525 |
-
"grad_norm_g": grad_norm_g,
|
526 |
-
}
|
527 |
-
scalar_dict.update(
|
528 |
-
{
|
529 |
-
"loss/g/fm": loss_fm,
|
530 |
-
"loss/g/mel": loss_mel,
|
531 |
-
"loss/g/kl": loss_kl,
|
532 |
-
}
|
533 |
-
)
|
534 |
-
|
535 |
-
scalar_dict.update(
|
536 |
-
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
537 |
-
)
|
538 |
-
scalar_dict.update(
|
539 |
-
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
540 |
-
)
|
541 |
-
scalar_dict.update(
|
542 |
-
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
543 |
-
)
|
544 |
-
image_dict = {
|
545 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
546 |
-
y_mel[0].data.cpu().numpy()
|
547 |
-
),
|
548 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
549 |
-
y_hat_mel[0].data.cpu().numpy()
|
550 |
-
),
|
551 |
-
"all/mel": utils.plot_spectrogram_to_numpy(
|
552 |
-
mel[0].data.cpu().numpy()
|
553 |
-
),
|
554 |
-
}
|
555 |
-
utils.summarize(
|
556 |
-
writer=writer,
|
557 |
-
global_step=global_step,
|
558 |
-
images=image_dict,
|
559 |
-
scalars=scalar_dict,
|
560 |
-
)
|
561 |
-
global_step += 1
|
562 |
-
# /Run steps
|
563 |
-
|
564 |
-
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
565 |
-
if hps.if_latest == 0:
|
566 |
-
utils.save_checkpoint(
|
567 |
-
net_g,
|
568 |
-
optim_g,
|
569 |
-
hps.train.learning_rate,
|
570 |
-
epoch,
|
571 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
572 |
-
)
|
573 |
-
utils.save_checkpoint(
|
574 |
-
net_d,
|
575 |
-
optim_d,
|
576 |
-
hps.train.learning_rate,
|
577 |
-
epoch,
|
578 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
579 |
-
)
|
580 |
-
else:
|
581 |
-
utils.save_checkpoint(
|
582 |
-
net_g,
|
583 |
-
optim_g,
|
584 |
-
hps.train.learning_rate,
|
585 |
-
epoch,
|
586 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(2333333)),
|
587 |
-
)
|
588 |
-
utils.save_checkpoint(
|
589 |
-
net_d,
|
590 |
-
optim_d,
|
591 |
-
hps.train.learning_rate,
|
592 |
-
epoch,
|
593 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
594 |
-
)
|
595 |
-
if rank == 0 and hps.save_every_weights == "1":
|
596 |
-
if hasattr(net_g, "module"):
|
597 |
-
ckpt = net_g.module.state_dict()
|
598 |
-
else:
|
599 |
-
ckpt = net_g.state_dict()
|
600 |
-
logger.info(
|
601 |
-
"saving ckpt %s_e%s:%s"
|
602 |
-
% (
|
603 |
-
hps.name,
|
604 |
-
epoch,
|
605 |
-
savee(
|
606 |
-
ckpt,
|
607 |
-
hps.sample_rate,
|
608 |
-
hps.if_f0,
|
609 |
-
hps.name + "_e%s_s%s" % (epoch, global_step),
|
610 |
-
epoch,
|
611 |
-
hps.version,
|
612 |
-
hps,
|
613 |
-
),
|
614 |
-
)
|
615 |
-
)
|
616 |
-
|
617 |
-
if rank == 0:
|
618 |
-
logger.info("====> Epoch: {} {}".format(epoch, epoch_recorder.record()))
|
619 |
-
if epoch >= hps.total_epoch and rank == 0:
|
620 |
-
logger.info("Training is done. The program is closed.")
|
621 |
-
|
622 |
-
if hasattr(net_g, "module"):
|
623 |
-
ckpt = net_g.module.state_dict()
|
624 |
-
else:
|
625 |
-
ckpt = net_g.state_dict()
|
626 |
-
logger.info(
|
627 |
-
"saving final ckpt:%s"
|
628 |
-
% (
|
629 |
-
savee(
|
630 |
-
ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version, hps
|
631 |
-
)
|
632 |
-
)
|
633 |
-
)
|
634 |
-
sleep(1)
|
635 |
-
os._exit(2333333)
|
636 |
-
|
637 |
-
|
638 |
-
if __name__ == "__main__":
|
639 |
-
torch.multiprocessing.set_start_method("spawn")
|
640 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|