|
import os |
|
from i18n.i18n import I18nAuto |
|
from configs.config import Config |
|
from sklearn.cluster import MiniBatchKMeans |
|
import torch, platform |
|
import numpy as np |
|
import gradio as gr |
|
import faiss |
|
import fairseq |
|
import pathlib |
|
import json |
|
from time import sleep |
|
from subprocess import Popen |
|
from random import shuffle |
|
import warnings |
|
import traceback |
|
import threading |
|
import shutil |
|
import logging |
|
import sys |
|
from dotenv import load_dotenv |
|
from infer.modules.vc.modules import VC |
|
import shutil, glob |
|
from easyfuncs import download_from_url, CachedModels |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
load_dotenv() |
|
|
|
|
|
model_library = CachedModels() |
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
logging.getLogger("httpx").setLevel(logging.WARNING) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
tmp = os.path.join(now_dir, "TEMP") |
|
shutil.rmtree(tmp, ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) |
|
os.makedirs(tmp, exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) |
|
os.environ["TEMP"] = tmp |
|
warnings.filterwarnings("ignore") |
|
torch.manual_seed(114514) |
|
|
|
|
|
config = Config() |
|
vc = VC(config) |
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent): |
|
"""Small button with single emoji as text, fits inside gradio forms""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(variant="tool", **kwargs) |
|
|
|
def get_block_name(self): |
|
return "button" |
|
|
|
|
|
weight_root = os.getenv("weight_root") |
|
index_root = os.getenv("index_root") |
|
outside_index_root = os.getenv("outside_index_root") |
|
|
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
|
|
|
|
|
|
def lookup_indices(index_root): |
|
global index_paths |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
|
|
|
|
lookup_indices(index_root) |
|
lookup_indices(outside_index_root) |
|
|
|
|
|
def change_choices(): |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
return {"choices": sorted(names), "__type__": "update"}, { |
|
"choices": sorted(index_paths), |
|
"__type__": "update", |
|
} |
|
|
|
|
|
def clean(): |
|
return {"value": "", "__type__": "update"} |
|
|
|
|
|
def if_done(done, p): |
|
while 1: |
|
if p.poll() is None: |
|
sleep(0.5) |
|
else: |
|
break |
|
done[0] = True |
|
|
|
|
|
def if_done_multi(done, ps): |
|
while 1: |
|
|
|
|
|
flag = 1 |
|
for p in ps: |
|
if p.poll() is None: |
|
flag = 0 |
|
sleep(0.5) |
|
break |
|
if flag == 1: |
|
break |
|
done[0] = True |
|
|
|
|
|
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app: |
|
with gr.Row(): |
|
gr.Markdown("<center><h1> RVC V2 - EASY GUI") |
|
with gr.Tabs(): |
|
with gr.TabItem("Inference"): |
|
with gr.Row(): |
|
voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True) |
|
refresh_button = gr.Button("Refresh", variant="primary") |
|
spk_item = gr.Slider( |
|
minimum=0, |
|
maximum=2333, |
|
step=1, |
|
label="Speaker ID", |
|
value=0, |
|
visible=False, |
|
interactive=True, |
|
) |
|
vc_transform0 = gr.Number( |
|
label="Pitch", |
|
value=0 |
|
) |
|
but0 = gr.Button(value="Convert", variant="primary") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
dropbox = gr.File(label="Drop your audio here & hit the Reload button.") |
|
with gr.Row(): |
|
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath") |
|
with gr.Row(): |
|
paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')] |
|
input_audio0 = gr.Dropdown( |
|
label="Input Path", |
|
value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '', |
|
choices=paths_for_files('audios'), |
|
allow_custom_value=True |
|
) |
|
with gr.Row(): |
|
audio_player = gr.Audio() |
|
input_audio0.change( |
|
inputs=[input_audio0], |
|
outputs=[audio_player], |
|
fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None |
|
) |
|
record_button.stop_recording( |
|
fn=lambda audio:audio, |
|
inputs=[record_button], |
|
outputs=[input_audio0]) |
|
dropbox.upload( |
|
fn=lambda audio:audio.name, |
|
inputs=[dropbox], |
|
outputs=[input_audio0]) |
|
with gr.Column(): |
|
with gr.Accordion("Change Index", open=False): |
|
file_index2 = gr.Dropdown( |
|
label="Change Index", |
|
choices=sorted(index_paths), |
|
interactive=True, |
|
value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else '' |
|
) |
|
index_rate1 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label="Index Strength", |
|
value=0.5, |
|
interactive=True, |
|
) |
|
vc_output2 = gr.Audio(label="Output") |
|
with gr.Accordion("General Settings", open=False): |
|
f0method0 = gr.Radio( |
|
label="Method", |
|
choices=["pm", "harvest", "crepe", "rmvpe"] |
|
if config.dml == False |
|
else ["pm", "harvest", "rmvpe"], |
|
value="rmvpe", |
|
interactive=True, |
|
) |
|
filter_radius0 = gr.Slider( |
|
minimum=0, |
|
maximum=7, |
|
label="Breathiness Reduction (Harvest only)", |
|
value=3, |
|
step=1, |
|
interactive=True, |
|
) |
|
resample_sr0 = gr.Slider( |
|
minimum=0, |
|
maximum=48000, |
|
label="Resample", |
|
value=0, |
|
step=1, |
|
interactive=True, |
|
visible=False |
|
) |
|
rms_mix_rate0 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label="Volume Normalization", |
|
value=0, |
|
interactive=True, |
|
) |
|
protect0 = gr.Slider( |
|
minimum=0, |
|
maximum=0.5, |
|
label="Breathiness Protection (0 is enabled, 0.5 is disabled)", |
|
value=0.33, |
|
step=0.01, |
|
interactive=True, |
|
) |
|
if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0) |
|
file_index1 = gr.Textbox( |
|
label="Index Path", |
|
interactive=True, |
|
visible=False |
|
) |
|
refresh_button.click( |
|
fn=change_choices, |
|
inputs=[], |
|
outputs=[voice_model, file_index2], |
|
api_name="infer_refresh", |
|
) |
|
refresh_button.click( |
|
fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, |
|
inputs=[], |
|
outputs = [input_audio0], |
|
) |
|
refresh_button.click( |
|
fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, |
|
inputs=[], |
|
outputs = [input_audio0], |
|
) |
|
with gr.Row(): |
|
f0_file = gr.File(label="F0 Path", visible=False) |
|
with gr.Row(): |
|
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False) |
|
but0.click( |
|
vc.vc_single, |
|
[ |
|
spk_item, |
|
input_audio0, |
|
vc_transform0, |
|
f0_file, |
|
f0method0, |
|
file_index1, |
|
file_index2, |
|
index_rate1, |
|
filter_radius0, |
|
resample_sr0, |
|
rms_mix_rate0, |
|
protect0, |
|
], |
|
[vc_output1, vc_output2], |
|
api_name="infer_convert", |
|
) |
|
voice_model.change( |
|
fn=vc.get_vc, |
|
inputs=[voice_model, protect0, protect0], |
|
outputs=[spk_item, protect0, protect0, file_index2, file_index2], |
|
api_name="infer_change_voice", |
|
) |
|
with gr.TabItem("Download Models"): |
|
with gr.Row(): |
|
url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6) |
|
name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2) |
|
url_download = gr.Button(value="Download Model",scale=2) |
|
url_download.click( |
|
inputs=[url_input,name_output], |
|
outputs=[url_input], |
|
fn=download_from_url, |
|
) |
|
with gr.Row(): |
|
model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5) |
|
download_from_browser = gr.Button(value="Get",scale=2) |
|
download_from_browser.click( |
|
inputs=[model_browser], |
|
outputs=[model_browser], |
|
fn=lambda model: download_from_url(model_library.models[model],model), |
|
) |
|
|
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=not config.noautoopen, |
|
server_port=config.listen_port, |
|
) |