netflypsb commited on
Commit
31f1ca6
·
verified ·
1 Parent(s): 41fecfa

Create strategy.py

Browse files
Files changed (1) hide show
  1. signals/strategy.py +86 -0
signals/strategy.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from indicators.sma import calculate_21_50_sma
3
+ from indicators.bollinger_bands import calculate_bollinger_bands
4
+
5
+ def calculate_standard_deviation(data):
6
+ """
7
+ Calculate the standard deviation of the closing prices over a 21-period window.
8
+
9
+ Parameters:
10
+ - data (pd.DataFrame): The stock data with 'Close' column.
11
+
12
+ Returns:
13
+ - pd.DataFrame: The stock data with an added 'SD_21' column for the standard deviation.
14
+ """
15
+ data['SD_21'] = data['Close'].rolling(window=21).std()
16
+ return data
17
+
18
+ def check_buy_signal(data):
19
+ """
20
+ Analyzes stock data to identify buy signals based on enhanced criteria:
21
+ - On the 1 day time frame, the 21-period SMA is above the 50-period SMA.
22
+ - The 21-period SMA has been above the 50-period SMA for more than 1 day.
23
+ - On the 1-hour time frame, the 21-period SMA has just crossed above the 50-period SMA from below.
24
+ - On the 1-day time frame, the price is either below the 21-period SMA or less than 0.25 SD above the 21-period SMA.
25
+
26
+ Parameters:
27
+ - data (pd.DataFrame): The stock data with 'Close', 'SMA_21', 'SMA_50', 'SD_21' columns.
28
+
29
+ Returns:
30
+ - pd.Series: A boolean series indicating buy signals.
31
+ """
32
+ price_position = data['Close'] - data['SMA_21']
33
+ within_sd_limit = (price_position > 0) & (price_position <= 0.25 * data['SD_21'])
34
+ buy_signal = ((data['SMA_21'] > data['SMA_50']) &
35
+ (data['SMA_21'].shift(1) > data['SMA_50'].shift(1)) &
36
+ ((data['Close'] < data['SMA_21']) | within_sd_limit))
37
+ return buy_signal
38
+
39
+ def check_sell_signal(data):
40
+ """
41
+ Analyzes stock data to identify sell signals based on the criteria:
42
+ - The price has crossed above the upper band of the 1.7SD Bollinger Band on the 21-period SMA.
43
+
44
+ Parameters:
45
+ - data (pd.DataFrame): The stock data with 'Close', 'BB_Upper' columns.
46
+
47
+ Returns:
48
+ - pd.Series: A boolean series indicating sell signals.
49
+ """
50
+ sell_signal = data['Close'] > data['BB_Upper']
51
+ return sell_signal
52
+
53
+ def generate_signals(stock_data):
54
+ """
55
+ Main function to generate buy and sell signals for a given stock.
56
+
57
+ Parameters:
58
+ - stock_data (pd.DataFrame): The stock data.
59
+
60
+ Returns:
61
+ - pd.DataFrame: The stock data with additional columns 'Buy_Signal' and 'Sell_Signal'.
62
+ """
63
+ # Ensure the necessary SMA, Bollinger Bands, and standard deviation calculations are performed
64
+ stock_data = calculate_21_50_sma(stock_data)
65
+ stock_data = calculate_bollinger_bands(stock_data)
66
+ stock_data = calculate_standard_deviation(stock_data)
67
+
68
+ # Generate buy and sell signals
69
+ stock_data['Buy_Signal'] = check_buy_signal(stock_data)
70
+ stock_data['Sell_Signal'] = check_sell_signal(stock_data)
71
+
72
+ return stock_data
73
+
74
+ if __name__ == "__main__":
75
+ # Example usage
76
+ dates = pd.date_range(start='2023-01-01', periods=100, freq='D')
77
+ close_prices = pd.Series((100 + pd.np.random.randn(100).cumsum()), index=dates)
78
+ sample_data = pd.DataFrame({'Close': close_prices})
79
+
80
+ # Simulating the adding of SMA and SD columns for the example
81
+ sample_data = calculate_21_50_sma(sample_data)
82
+ sample_data = calculate_bollinger_bands(sample_data)
83
+ sample_data = calculate_standard_deviation(sample_data)
84
+
85
+ signals_data = generate_signals(sample_data)
86
+ print(signals_data[['Buy_Signal', 'Sell_Signal']].tail())