Spaces:
Runtime error
Runtime error
Update indicators/sma.py
Browse files- indicators/sma.py +29 -26
indicators/sma.py
CHANGED
@@ -1,42 +1,45 @@
|
|
1 |
-
# indicators/sma.py
|
2 |
-
|
3 |
import pandas as pd
|
4 |
|
5 |
-
def calculate_sma(data,
|
6 |
"""
|
7 |
-
|
8 |
|
9 |
Parameters:
|
10 |
-
- data:
|
11 |
-
-
|
12 |
|
13 |
Returns:
|
14 |
-
-
|
15 |
"""
|
16 |
-
|
17 |
-
return sma
|
18 |
|
19 |
-
def
|
20 |
"""
|
21 |
-
|
22 |
|
23 |
Parameters:
|
24 |
-
- data
|
25 |
|
26 |
-
|
27 |
-
-
|
28 |
"""
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Example usage
|
33 |
if __name__ == "__main__":
|
34 |
-
#
|
35 |
-
#
|
36 |
-
dates = pd.date_range(start=
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
def calculate_sma(data, window):
|
4 |
"""
|
5 |
+
Calculate the Simple Moving Average (SMA) for the given data.
|
6 |
|
7 |
Parameters:
|
8 |
+
- data (pd.Series): The stock data (typically closing prices).
|
9 |
+
- window (int): The period over which to calculate the SMA.
|
10 |
|
11 |
Returns:
|
12 |
+
- pd.Series: The calculated SMA values.
|
13 |
"""
|
14 |
+
return data.rolling(window=window, min_periods=1).mean()
|
|
|
15 |
|
16 |
+
def calculate_21_50_sma(data):
|
17 |
"""
|
18 |
+
Calculate both the 21-period and 50-period SMAs for the given stock data.
|
19 |
|
20 |
Parameters:
|
21 |
+
- data (pd.DataFrame): The stock data, expected to have a 'Close' column.
|
22 |
|
23 |
+
Returns:
|
24 |
+
- pd.DataFrame: The input data frame with added columns for the 21-period and 50-period SMAs.
|
25 |
"""
|
26 |
+
if 'Close' not in data.columns:
|
27 |
+
raise ValueError("Data frame must contain a 'Close' column.")
|
28 |
+
|
29 |
+
# Calculate the SMAs
|
30 |
+
data['SMA_21'] = calculate_sma(data['Close'], 21)
|
31 |
+
data['SMA_50'] = calculate_sma(data['Close'], 50)
|
32 |
+
|
33 |
+
return data
|
34 |
|
|
|
35 |
if __name__ == "__main__":
|
36 |
+
# Example usage
|
37 |
+
# Generate a sample DataFrame with 'Close' prices
|
38 |
+
dates = pd.date_range(start='2023-01-01', periods=100, freq='D')
|
39 |
+
close_prices = pd.Series((100 + np.random.randn(100).cumsum()), index=dates)
|
40 |
+
sample_data = pd.DataFrame({'Close': close_prices})
|
41 |
+
|
42 |
+
# Calculate the 21 and 50 period SMAs
|
43 |
+
sma_data = calculate_21_50_sma(sample_data)
|
44 |
+
|
45 |
+
print(sma_data.head()) # Print the first few rows to verify
|