Spaces:
Runtime error
Runtime error
neelsahu
commited on
Commit
·
f3d8098
1
Parent(s):
0c01d2e
new repo
Browse files- __pycache__/clean.cpython-39.pyc +0 -0
- __pycache__/language_detection.cpython-39.pyc +0 -0
- app.py +52 -0
- clean.py +23 -0
- language_detection.py +246 -0
- model_joblib.pkl +3 -0
- requirements.txt +4 -0
- tf_joblib.pkl +3 -0
__pycache__/clean.cpython-39.pyc
ADDED
Binary file (1.12 kB). View file
|
|
__pycache__/language_detection.cpython-39.pyc
ADDED
Binary file (2.3 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio.components import Text
|
3 |
+
import joblib
|
4 |
+
import clean
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import language_detection
|
8 |
+
print("all imports worked")
|
9 |
+
# Load pre-trained model
|
10 |
+
model = joblib.load('model_joblib.pkl')
|
11 |
+
print("model load ")
|
12 |
+
tf = joblib.load('tf_joblib.pkl')
|
13 |
+
print("tfidf load ")
|
14 |
+
|
15 |
+
# Define function to predict whether sentence is abusive or not
|
16 |
+
def predict_abusive_lang(text):
|
17 |
+
print("original text ", text)
|
18 |
+
|
19 |
+
lang = language_detection.en_hi_detection(text)
|
20 |
+
print("language detected ", lang)
|
21 |
+
|
22 |
+
if lang=='eng':
|
23 |
+
cleaned_text = clean.text_cleaning(text)
|
24 |
+
print("cleaned text ", text)
|
25 |
+
text = tf.transform([cleaned_text])
|
26 |
+
print("tfidf transformation ", text)
|
27 |
+
prediction = model.predict(text)
|
28 |
+
print("prediction ", prediction)
|
29 |
+
if len(prediction)!=0 and prediction[0]==0:
|
30 |
+
return ["Not Abusive", cleaned_text]
|
31 |
+
elif len(prediction)!=0 and prediction[0]==1:
|
32 |
+
return ["Abusive",cleaned_text]
|
33 |
+
else :
|
34 |
+
return ["Please write something in the comment box..","No cleaned text"]
|
35 |
+
elif lang=='hi':
|
36 |
+
print("using hugging face api")
|
37 |
+
return ["Hindi Text abusive part coming soon.....","No cleaned text"]
|
38 |
+
else :
|
39 |
+
return ["Unknown language","No cleaned text"]
|
40 |
+
|
41 |
+
|
42 |
+
# text = '":::::: 128514 - & % ! @ # $ % ^ & * ( ) _ + I got blocked for 30 minutes, you got blocked for more than days. You is lost. www.google.com, #happydiwali, @amangupta And I don\'t even know who the fuck are you. It\'s a zero! \n"'
|
43 |
+
# predict_abusive_lang(text)
|
44 |
+
|
45 |
+
# Define the GRADIO output interfaces
|
46 |
+
output_interfaces = [
|
47 |
+
gr.outputs.Textbox(label="Result"),
|
48 |
+
gr.outputs.Textbox(label="Cleaned text")
|
49 |
+
]
|
50 |
+
app = gr.Interface(predict_abusive_lang, inputs='text', outputs=output_interfaces, title="Abuse Classifier", description="Enter a sentence and the model will predict whether it is abusive or not.")
|
51 |
+
#Start the GRADIO app
|
52 |
+
app.launch()
|
clean.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from string import punctuation
|
2 |
+
import re
|
3 |
+
|
4 |
+
def text_cleaning(text):
|
5 |
+
# Remove URLs starting with http, https and www, as well as quotes
|
6 |
+
result = re.sub(r'http\S+|www\S+|\"', '', text)
|
7 |
+
|
8 |
+
# Split the text into a list of words
|
9 |
+
words = result.split()
|
10 |
+
|
11 |
+
# Remove mentions and hashtags
|
12 |
+
words = [word for word in words if not word.startswith(('@', '#'))]
|
13 |
+
|
14 |
+
# Remove leading/trailing punctuation, and individual punctuation marks
|
15 |
+
words = [word.strip(punctuation) for word in words if word not in punctuation]
|
16 |
+
filtered_list = [item for item in words if item != '']
|
17 |
+
# Remove words starting with digits
|
18 |
+
words = [word for word in filtered_list if not word[0].isdigit()]
|
19 |
+
|
20 |
+
# Convert all words to lowercase
|
21 |
+
words = [w.lower() for w in words]
|
22 |
+
|
23 |
+
return " ".join(words)
|
language_detection.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import nltk
|
3 |
+
from nltk.corpus import wordnet
|
4 |
+
import re
|
5 |
+
from nltk.stem import WordNetLemmatizer
|
6 |
+
|
7 |
+
stop_words = ['i',
|
8 |
+
'me',
|
9 |
+
'my',
|
10 |
+
'myself',
|
11 |
+
'we',
|
12 |
+
'our',
|
13 |
+
'ours',
|
14 |
+
'ourselves',
|
15 |
+
'you',
|
16 |
+
"you're",
|
17 |
+
"you've",
|
18 |
+
"you'll",
|
19 |
+
"you'd",
|
20 |
+
'your',
|
21 |
+
'yours',
|
22 |
+
'yourself',
|
23 |
+
'yourselves',
|
24 |
+
'he',
|
25 |
+
'him',
|
26 |
+
'his',
|
27 |
+
'himself',
|
28 |
+
'she',
|
29 |
+
"she's",
|
30 |
+
'her',
|
31 |
+
'hers',
|
32 |
+
'herself',
|
33 |
+
'it',
|
34 |
+
"it's",
|
35 |
+
'its',
|
36 |
+
'itself',
|
37 |
+
'they',
|
38 |
+
'them',
|
39 |
+
'their',
|
40 |
+
'theirs',
|
41 |
+
'themselves',
|
42 |
+
'what',
|
43 |
+
'which',
|
44 |
+
'who',
|
45 |
+
'whom',
|
46 |
+
'this',
|
47 |
+
'that',
|
48 |
+
"that'll",
|
49 |
+
'these',
|
50 |
+
'those',
|
51 |
+
'am',
|
52 |
+
'is',
|
53 |
+
'are',
|
54 |
+
'was',
|
55 |
+
'were',
|
56 |
+
'be',
|
57 |
+
'been',
|
58 |
+
'being',
|
59 |
+
'have',
|
60 |
+
'has',
|
61 |
+
'had',
|
62 |
+
'having',
|
63 |
+
'do',
|
64 |
+
'does',
|
65 |
+
'did',
|
66 |
+
'doing',
|
67 |
+
'a',
|
68 |
+
'an',
|
69 |
+
'the',
|
70 |
+
'and',
|
71 |
+
'but',
|
72 |
+
'if',
|
73 |
+
'or',
|
74 |
+
'because',
|
75 |
+
'as',
|
76 |
+
'until',
|
77 |
+
'while',
|
78 |
+
'of',
|
79 |
+
'at',
|
80 |
+
'by',
|
81 |
+
'for',
|
82 |
+
'with',
|
83 |
+
'about',
|
84 |
+
'against',
|
85 |
+
'between',
|
86 |
+
'into',
|
87 |
+
'through',
|
88 |
+
'during',
|
89 |
+
'before',
|
90 |
+
'after',
|
91 |
+
'above',
|
92 |
+
'below',
|
93 |
+
'to',
|
94 |
+
'from',
|
95 |
+
'up',
|
96 |
+
'down',
|
97 |
+
'in',
|
98 |
+
'out',
|
99 |
+
'on',
|
100 |
+
'off',
|
101 |
+
'over',
|
102 |
+
'under',
|
103 |
+
'again',
|
104 |
+
'further',
|
105 |
+
'then',
|
106 |
+
'once',
|
107 |
+
'here',
|
108 |
+
'there',
|
109 |
+
'when',
|
110 |
+
'where',
|
111 |
+
'why',
|
112 |
+
'how',
|
113 |
+
'all',
|
114 |
+
'any',
|
115 |
+
'both',
|
116 |
+
'each',
|
117 |
+
'few',
|
118 |
+
'more',
|
119 |
+
'most',
|
120 |
+
'other',
|
121 |
+
'some',
|
122 |
+
'such',
|
123 |
+
'no',
|
124 |
+
'nor',
|
125 |
+
'not',
|
126 |
+
'only',
|
127 |
+
'own',
|
128 |
+
'same',
|
129 |
+
'so',
|
130 |
+
'than',
|
131 |
+
'too',
|
132 |
+
'very',
|
133 |
+
's',
|
134 |
+
't',
|
135 |
+
'can',
|
136 |
+
'will',
|
137 |
+
'just',
|
138 |
+
'don',
|
139 |
+
"don't",
|
140 |
+
'should',
|
141 |
+
"should've",
|
142 |
+
'now',
|
143 |
+
'd',
|
144 |
+
'll',
|
145 |
+
'm',
|
146 |
+
'o',
|
147 |
+
're',
|
148 |
+
've',
|
149 |
+
'y',
|
150 |
+
'ain',
|
151 |
+
'aren',
|
152 |
+
"aren't",
|
153 |
+
'couldn',
|
154 |
+
"couldn't",
|
155 |
+
'didn',
|
156 |
+
"didn't",
|
157 |
+
'doesn',
|
158 |
+
"doesn't",
|
159 |
+
'hadn',
|
160 |
+
"hadn't",
|
161 |
+
'hasn',
|
162 |
+
"hasn't",
|
163 |
+
'haven',
|
164 |
+
"haven't",
|
165 |
+
'isn',
|
166 |
+
"isn't",
|
167 |
+
'ma',
|
168 |
+
'mightn',
|
169 |
+
"mightn't",
|
170 |
+
'mustn',
|
171 |
+
"mustn't",
|
172 |
+
'needn',
|
173 |
+
"needn't",
|
174 |
+
'shan',
|
175 |
+
"shan't",
|
176 |
+
'shouldn',
|
177 |
+
"shouldn't",
|
178 |
+
'wasn',
|
179 |
+
"wasn't",
|
180 |
+
'weren',
|
181 |
+
"weren't",
|
182 |
+
'won',
|
183 |
+
"won't",
|
184 |
+
'wouldn',
|
185 |
+
"wouldn't"]
|
186 |
+
# Create a lemmatizer object
|
187 |
+
lemmatizer = WordNetLemmatizer()
|
188 |
+
|
189 |
+
#from english_words import get_english_words_set
|
190 |
+
#web2lowerset = get_english_words_set(['web2'], lower=True)
|
191 |
+
|
192 |
+
# Define the Unicode range for Hindi letters
|
193 |
+
HINDI_UNICODE_RANGE = (0x0900, 0x097F)
|
194 |
+
|
195 |
+
# Function to check if a given character is a Hindi letter
|
196 |
+
def is_hindi_letter(c):
|
197 |
+
return ord(c) >= HINDI_UNICODE_RANGE[0] and ord(c) <= HINDI_UNICODE_RANGE[1]
|
198 |
+
|
199 |
+
|
200 |
+
# In[8]:
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
def en_hi_detection(text):
|
205 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
206 |
+
|
207 |
+
words = text.lower().strip().split()
|
208 |
+
count_en = 0
|
209 |
+
# Lemmatize words for all POS
|
210 |
+
for word in words:
|
211 |
+
for pos in [wordnet.NOUN, wordnet.VERB, wordnet.ADJ, wordnet.ADV]:
|
212 |
+
# print(f"{word} ({pos}): {lemmatizer.lemmatize(word, pos)}")
|
213 |
+
lem_word = lemmatizer.lemmatize(word, pos)
|
214 |
+
if lem_word in nltk.corpus.wordnet.words():
|
215 |
+
count_en+=1
|
216 |
+
break
|
217 |
+
elif lem_word in stop_words:
|
218 |
+
count_en+=1
|
219 |
+
break
|
220 |
+
#print("total english words found :", count_en)
|
221 |
+
#print("length of sentence :", len(words))
|
222 |
+
#print(count_en/len(words)*100, "% english words found")
|
223 |
+
|
224 |
+
|
225 |
+
count = 0
|
226 |
+
# Check each word for Hindi letters and print the results
|
227 |
+
for word in words:
|
228 |
+
hindi_letters = []
|
229 |
+
for c in word:
|
230 |
+
if is_hindi_letter(c):
|
231 |
+
hindi_letters.append(c)
|
232 |
+
if hindi_letters:
|
233 |
+
#print(f"Word '{word}' contains Hindi letters: {' '.join(hindi_letters)}")
|
234 |
+
count+=1
|
235 |
+
else:
|
236 |
+
pass
|
237 |
+
#print(f"Word '{word}' does not contain any Hindi letters.")
|
238 |
+
|
239 |
+
#print(count/len(words)*100, "% Hindi words found")
|
240 |
+
if count_en/len(words)*100>75:
|
241 |
+
return "eng"
|
242 |
+
elif count/len(words)*100>75:
|
243 |
+
return "hi"
|
244 |
+
else :
|
245 |
+
return "unknown"
|
246 |
+
|
model_joblib.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6308a9d0d4eb28b3ea67bc20a2e200218a9ca2c12b2fc8e17027536d1147d20f
|
3 |
+
size 318919
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.0.2
|
2 |
+
nltk==3.8.1
|
3 |
+
joblib==1.0.1
|
4 |
+
|
tf_joblib.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e53104db442b78f814eab3c2d081f6fc06279a4bdec6cfaea81c8221447f5dd3
|
3 |
+
size 1441403
|